Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 466: 133606, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38286048

ABSTRACT

Direct photocatalytic reduction of toxic formaldehyde (HCHO) in value-added chemicals and fuels is promising because that not only abates the environmental pollution, but also solves the energy shortage. Herein, self-supported MoO2 and MoO3 nanoparticles growing on Mo meshes were comparatively applied to the photocatalytic conversion of HCHO. Under UV-visble lights, MoO2 reduces HCHO in methanol (CH3OH) while MoO3 oxidizes HCHO in carbon oxide and water. Their contrary photocatalytic capacities were revealed. Compared with MoO3, the lower work function of MoO2 enables an electron-rich interface, realizing a complete reduction of 30 ppm HCHO to CH3OH in 30 min. Theoretical calculations clarify that a large number of delocalized electrons on MoO2 attracts HCHO molecule and activates its CO bond, facilitating subsequent hydrogenation and reduction of HCHO to CH3OH. As for MoO3, the wider bandgap and higher potential of valence band govern the photocatalytic oxidation of HCHO.

SELECTION OF CITATIONS
SEARCH DETAIL
...