Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1516: 42-53, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-28823786

ABSTRACT

This work describes a novel method for the synthesis of molecularly imprinted polymers (MIPs) using 2-(trifluoromethyl) acrylic acid (TFMAA) and 4-vinyl pyridine (4-Vpy) as binary functional monomers, perfluorooctanoic acid (PFOA) as template, and ethyleneglycol dimethacrylate (EGDMA) as cross-linker in the presence of azobisisobutyronitrile (AIBN). The binary functional monomer MIPs were applied to selective recognition for PFOA and perfluorooctanesulfonic acid (PFOS) from aqueous environment. The MIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and microscopic electrophoresis. Thereafter, the adsorption capacity and selectivity of the synthesized MIPs for PFOA and PFOS were evaluated by batch adsorption experiments. The maximum adsorption capacities of the MIPs for PFOA and PFOS were 6.42 and 6.27mg/g, respectively. It was also found that the adsorption capacities remained constant with increasing the solution pH in the range of 2.0-5.0, and then decreased when the pH was further increased. Finally, the novel MIPs can be reused after five cycles of adsorption-desorption-adsorption with no significant decrease of removal rate and have an effective performance in selective removal of PFOA and PFOS in real lake water samples. All the results indicate that the binary functional monomer MIPs have great potential to remove PFOA and PFOS in aqueous environment.


Subject(s)
Alkanesulfonic Acids/isolation & purification , Caprylates/isolation & purification , Chemistry Techniques, Analytical/instrumentation , Fluorocarbons/isolation & purification , Polymers/chemical synthesis , Adsorption , Methacrylates/chemistry , Microscopy, Electron, Scanning , Molecular Imprinting , Polymers/chemistry , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Water/chemistry
2.
Sci Total Environ ; 586: 817-826, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28202242

ABSTRACT

There has been limited research investigating how the mechanisms of aggregation of magnetic nanoparticles (MNPs) are affected by inorganic ions. In this study, Na+, Mg2+, Ca2+, Sr2+ and Ba2+ were selected to systematically study the aggregation mechanisms of Fe3O4 MNPs. The results indicated that divalent cations more significantly affected the stabilities of MNPs than Na+ at low concentrations (e.g., 0.1mM) in a decreasing order of Ba2+>Sr2+>Ca2+>Mg2+>Na+. Extended DLVO theory did not offer a satisfactory explanation for the above difference due because it ignores specific ion effects. It was also found that the initial adsorption ratios of these metals by Fe3O4 MNPs were linearly proportional to the hydrodynamic diameter (HDD) of Fe3O4 MNPs before aggregation occurred. In addition to the valence states, the hydration forces and ionic radii of the metal cations were proposed to be other factors that significantly affected the interactions of metal cations with Fe3O4 MNPs based on the excellent linear relationships of the HDD of Fe3O4 MNPs and these three factors. Moreover, a bridging function of divalent cations might develop after aggregation occurred based on the increases in their adsorption amounts and intensities for binding oxygen-containing functional groups. In addition, an increase in the positive ζ potential of MNPs was observed with the addition of divalent cations until 10.0mM at a pH of 5.0, which potentially enhances the resistance of MNPs to aggregation in aquatic systems compared with Na+. Consequentially, the effects of metal cations on the aggregation of MNPs are determined by the hydration forces, valance states, ionic radii and bond types formed on the MNPs. Thus, the specific ion effects of these cations should be considered in predicting the environmental behaviors of specific nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...