Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 675: 806-814, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39002231

ABSTRACT

Metal-organic compounds have attracted significant attention for lithium-ion battery (LIB) anodes. However, their practical application is severely hindered by the poor structural stability and sluggish Li+ reaction kinetics. Herein, we proposed a new type of metal-organic compound, metal alkoxides, for high-performance LIBs. A series of metal-alkoxide/graphene composites with different transition metal centers and alkoxide anions are prepared to investigate the structural stability, Li-storage ability, and Li+ diffusion kinetics. The results reveal that the metal centers and alkoxide anions have significant influence on the structural stability, molar mass, and electronic structures, which are highly related to the Li-storage performance. Among them, Co-EG/rGO (EG represents the ethylene glycol anion) delivers the best performance involving high specific capacity (975 mAh g-1 at 0.2 A g-1), excellent rate capability (400.8 mAh g-1 at 10 A g-1), and stable cycling performance (86.8 % capacity retention after 600 cycles) due to its stable structure, smaller molar mass, and favorable electronic structure. Moreover, the Li-storage mechanism and solid electrolyte interphase (SEI) evolution of the Co-EG/rGO electrode are studied in detail through multiple ex-situ/in-situ characterizations. This work provides a new type of metal alkoxide anode material for high-rate and long-life LIBs toward practical energy applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...