Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Cell Death Discov ; 10(1): 91, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378646

ABSTRACT

Pyroptosis plays a crucial role in sepsis, and the abnormal handling of myocyte calcium (Ca2+) has been associated with cardiomyocyte pyroptosis. Specifically, the inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is a Ca2+ release channel in the endoplasmic reticulum (ER). However, the specific role of IP3R2 in sepsis-induced cardiomyopathy (SIC) has not yet been determined. Thus, this study aimed to investigate the underlying mechanism by which IP3R2 channel-mediated Ca2+ signaling contributes to lipopolysaccharide (LPS)-induced cardiac pyroptosis. The SIC model was established in rats by intraperitoneal injection of LPS (10 mg/kg). Cardiac dysfunction was assessed using echocardiography, and the protein expression of relevant signaling pathways was analyzed using ELISA, RT-qPCR, and western blot. Small interfering RNAs (siRNA) and an inhibitor were used to explore the role of IP3R2 in neonatal rat cardiomyocytes (NRCMs) stimulated by LPS in vitro. LPS-induced NLRP3 overexpression and GSDMD-mediated pyroptosis in the rats' heart. Treatment with the NLRP3 inhibitor MCC950 alleviated LPS-induced cardiomyocyte pyroptosis. Furthermore, LPS increased ATP-induced intracellular Ca2+ release and IP3R2 expression in NRCMs. Inhibiting IP3R activity with xestospongin C (XeC) or knocking down IP3R2 reversed LPS-induced intracellular Ca2+ release. Additionally, inhibiting IP3R2 reversed LPS-induced pyroptosis by suppressing the NLRP3/Caspase-1/GSDMD pathway. We also found that ER stress and IP3R2-mediated Ca2+ release mutually regulated each other, contributing to cardiomyocyte pyroptosis. IP3R2 promotes NLRP3-mediated pyroptosis by regulating ER Ca2+ release, and the mutual regulation of IP3R2 and ER stress further promotes LPS-induced pyroptosis in cardiomyocytes.

2.
Eur J Pharmacol ; 952: 175754, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37182595

ABSTRACT

AIM: Sacubitril/valsartan (Sac/Val, LCZ696), the world's first angiotensin receptor-neprilysin inhibitor (ARNi), has been widely used in the treatment of heart failure. However, the use of Sac/Val in the treatment of atrial fibrillation (AF), especially AF with hypertension, has been less reported. We investigated the effect of Sac/Val on atrial remodeling and hypertension-related AF. METHODS: The AF induction rate and electrophysiological characteristics of spontaneously hypertensive rats (SHRs) treated with Sac/Val or Val were detected by rapid atrial pacing and electrical mapping/optical mapping. The whole-cell patch-clamp and Western blot were used to observe electrical/structural remodeling of atrial myocytes/tissue of rats and atrium-derived HL-1 cells cultured under 40 mmHg in vitro. RESULTS: Sac/Val was superior to Val in reducing blood pressure, myocardial hypertrophy and susceptibility of AF in SHRs. The shorten action potentials duration (APD), decreased L type calcium channel current (ICa,L) and Cav1.2, increased ultrarapid delayed rectified potassium current (Ikur) and Kv1.5 in atrial myocytes/tissue of SHRs could be better improved by Sac/Val, as well as the levels of atrial fibrosis. While the protein expression of angiotensin-converting enzyme-1 (ACE-1), angiotensin, angiotensin II type I AT1 receptor (AT1R) and neprilysin (NEP) were increased, which could be more effective ameliorated by Sac/Val than Val. Furthermore, Val + Sacubitrilat (LBQ657) (an active NEP inhibitor) was also superior to LBQ657 or Val in improving the electrical and structural remodeling of HL-1 cells through inhibiting NEP. CONCLUSION: Sac/Val can improve atrial structural and electrical remodeling induced by hypertension and reduce the AF susceptibility by inhibiting RAS and NEP. The above effects of Sac/Val were superior to Val alone.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Hypertension , Rats , Animals , Atrial Fibrillation/drug therapy , Rats, Inbred SHR , Neprilysin , Valsartan/pharmacology , Valsartan/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Aminobutyrates/pharmacology , Aminobutyrates/therapeutic use , Hypertension/complications , Hypertension/drug therapy , Antihypertensive Agents/pharmacology , Drug Combinations , Angiotensins , Tetrazoles/pharmacology
3.
Aging Cell ; 22(1): e13743, 2023 01.
Article in English | MEDLINE | ID: mdl-36468256

ABSTRACT

Atrial fibrosis induced by aging is one of the main causes of atrial fibrillation (AF), but the potential molecular mechanism is not clear. Acetyltransferase p300 participates in the cellular senescence and fibrosis, which might be involved in the age-related atrial fibrosis. Four microarray datasets generated from atrial tissue of AF patients and sinus rhythm (SR) controls were analyzed to find the possible relationship of p300 (EP300) with senescence and fibrosis. And then, biochemical assays and in vivo electrophysiological examination were performed on older AF patients, aging mice, and senescent atrial fibroblasts. The results showed that (1) the left atrial tissues of older AF patients, aging mouse, and senescence human atrial fibroblasts had more severe atrial fibrosis and higher protein expression levels of p300, p53/acetylated p53 (ac-p53)/p21, Smad3/p-Smads, and fibrosis-related factors. (2) p300 inhibitor curcumin and p300 knockdown treated aging mouse and senescence human atrial fibroblasts reduced the senescence ratio of atrial fibroblasts, ameliorated the atrial fibrosis, and decreased the AF inducibility. In contrast, over-expression of p300 can lead to the senescence of atrial fibroblasts and atrial fibrosis. (3) p53 knockdown decreased the expression of aging and fibrosis-related proteins. (4) Co-immunoprecipitation and immunofluorescence showed that p53 forms a complex with smad3 and directly regulates the expression of smad3 in atrial fibroblasts. Our findings suggest that the mechanism of atrial fibrosis induced by aging is, at least, partially dependent on the regulation of p300, which provides new sights into the AF treatment, especially for the elderly.


Subject(s)
Atrial Fibrillation , Tumor Suppressor Protein p53 , Humans , Animals , Mice , Aged , Tumor Suppressor Protein p53/metabolism , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Acetyltransferases/metabolism , Fibrosis , Fibroblasts/metabolism , Cellular Senescence/physiology , Smad3 Protein/metabolism
4.
Clin Exp Pharmacol Physiol ; 50(2): 158-168, 2023 02.
Article in English | MEDLINE | ID: mdl-36309970

ABSTRACT

Diabetic coronary artery injury is closely associated with Ca2+ dysregulation, although the underlying mechanism remains unclear. This study explored the role and mechanism of Ca2+ handling in coronary artery dysfunction in type 2 diabetic rats. Zucker diabetic fatty (ZDF) rats were used as the type 2 diabetes mellitus model. The contractility of coronary artery rings induced by KCl, CaCl2 , 5-HT and U46619 was significantly lower in ZDF rats than in Zucker lean rats. Vasoconstriction induced by 5-HT and U46619 was greatly inhibited by nifedipine. However, in the presence of 1 µM nifedipine or in the Ca2+ -free KH solution containing 1 µM nifedipine, there was no difference in the vasoconstriction between Zucker lean and ZDF rats. Store-operated calcium channels (SOCs) were not involved in coronary vasoconstriction. The downregulation of contractile proteins and the upregulation of synthesized proteins were in coronary artery smooth muscle cells (CASMCs) from ZDF rats. Metformin reversed the reduction of vasoconstriction in ZDF rats. Taken together, L-type calcium channel is important for regulating the excitation-contraction coupling of VSMCs in coronary arteries, and dysregulation of this channel contributes to the decreased contractility of coronary arteries in T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats , Animals , Coronary Vessels/metabolism , Calcium/metabolism , Rats, Zucker , Diabetes Mellitus, Type 2/metabolism , Nifedipine , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Diabetes Mellitus, Experimental/metabolism , Serotonin/metabolism , Calcium Channels, L-Type/metabolism
5.
Eur J Pharmacol ; 937: 175386, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36372274

ABSTRACT

Calcium (Ca2+) dysregulation contributes to various vascular diseases, but the role and underlying mechanism of stromal interaction molecule-1 (STIM1) in Ca2+ signaling and vasocontraction remain elusive. By using smooth muscle-specific STIM1 knockout (sm-STIM1 KO) mice and a multi myograph system, we investigated the differential role of STIM1 in Ca2+ handling between coronary and intrarenal arterial smooth muscles. After STIM1 deletion, contractile responses to 5-HT were obviously reduced in coronary and intrarenal arteries in the sm-STIM1 KO mice, but not altered in U46619. Phenylephrine barely induced the contraction of coronary arteries, we only detected an effect on the contraction of intrarenal arteries, which was also reduced in the sm-STIM1 KO mice. Then, L-type Ca2+ channel (Cav1.2)- mediated vasocontractions were significantly enhanced in coronary and intrarenal arteries in sm-STIM1 KO mice, similar to treatment with the Cav1.2 agonist Bay K8644 in coronary arteries. However, non-Cav1.2-mediated vasocontractions were remarkably reduced. IP3 receptor- and ryanodine receptor-mediated vasocontractions were both obviously decreased in coronary and intrarenal arteries in sm-STIM1 KO mice. Moreover, STIM1-mediated store operated Ca2+ entry (SOCE) only participated in the contraction of intrarenal arteries. In conclusion, we demonstrate that STIM1 participates in Cav1.2, sarcoplasmic reticulum (SR) Ca2+ release and store-operated Ca2+ (SOC) channels-mediated vasocontraction, which exhibits obvious organ-specificity between coronary and intrarenal arteries.


Subject(s)
Calcium Signaling , Calcium , Mice , Animals , Calcium/metabolism , Stromal Interaction Molecule 1/metabolism , Calcium Signaling/physiology , Ryanodine Receptor Calcium Release Channel/metabolism , Muscle, Smooth, Vascular , Arteries , Mice, Knockout
6.
Aging Cell ; 21(12): e13734, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36278684

ABSTRACT

Diabetes mellitus (DM) is a common chronic metabolic disease caused by significant accumulation of advanced glycation end products (AGEs). Atrial fibrillation (AF) is a common cardiovascular complication of DM. Here, we aim to clarify the role and mechanism of atrial myocyte senescence in the susceptibility of AF in diabetes. Rapid transesophageal atrial pacing was used to monitor the susceptibility of mice to AF. Whole-cell patch-clamp was employed to record the action potential (AP) and ion channels in single HL-1 cell and mouse atrial myocytes. More importantly, anti-RAGE antibody and RAGE-siRNA AAV9 were used to investigate the relationship among diabetes, aging, and AF. The results showed that elevated levels of p16 and retinoblastoma (Rb) protein in the atrium were associated with increased susceptibility to AF in diabetic mice. Mechanistically, AGEs increased p16/Rb protein expression and the number of SA-ß-gal-positive cells, prolonged the action potential duration (APD), reduced protein levels of Cav1.2, Kv1.5, and current density of ICa,L , IKur in HL-1 cells. Anti-RAGE antibody or RAGE-siRNA AAV9 reversed these effects in vitro and in vivo, respectively. Furthermore, downregulating p16 or Rb by siRNA prevented AGEs-mediated reduction of Cav1.2 and Kv1.5 proteins expression. In conclusion, AGEs accelerated atrial electrical remodeling and cellular senescence, contributing to increased AF susceptibility by activating the p16/Rb pathway. Inhibition of RAGE or the p16/Rb pathway may be a potential therapeutic target for AF in diabetes.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Diabetes Mellitus, Experimental , Mice , Animals , Atrial Fibrillation/drug therapy , Atrial Fibrillation/etiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Action Potentials/physiology , Glycation End Products, Advanced/metabolism
7.
Front Cardiovasc Med ; 9: 842885, 2022.
Article in English | MEDLINE | ID: mdl-35252406

ABSTRACT

Hypertension is a major cardiovascular risk factor for atrial fibrillation (AF) worldwide. However, the role of mechanical stress caused by hypertension on downregulating the L-type calcium current (ICa,L), which is vital for AF occurrence, remains unclear. Therefore, the aim of the present study was to investigate the role of Piezo1, a mechanically activated ion channel, in the decrease of ICa,L in response to high hydrostatic pressure (HHP, one of the principal mechanical stresses) at 40 mmHg, and to elucidate the underlying pathways. Experiments were conducted using left atrial appendages from patients with AF, spontaneously hypertensive rats (SHRs) treated with valsartan (Val) at 30 mg/kg/day and atrium-derived HL-1 cells exposed to HHP. The protein expression levels of Piezo1, Calmodulin (CaM), and Src increased, while that of the L-type calcium channel a1c subunit protein (Cav1.2) decreased in the left atrial tissue of AF patients and SHRs. SHRs were more vulnerable to AF, with decreased ICa,L and shortened action potential duration, which were ameliorated by Val treatment. Validation of these results in HL-1 cells in the context of HHP also demonstrated that Piezo1 is required for the decrease of ICa,L by regulating Ca2+ transient and activating CaM/Src pathway to increase the expression of paired like homeodomain-2 (Pitx2) in atrial myocytes. Together, these data demonstrate that HHP stimulation increases AF susceptibility through Piezo1 activation, which is required for the decrease of ICa,L via. the CaM/Src/Pitx2 pathway in atrial myocytes.

8.
Clin Exp Pharmacol Physiol ; 49(1): 25-34, 2022 01.
Article in English | MEDLINE | ID: mdl-34438468

ABSTRACT

Atrial fibrillation (AF) is associated with atrial conduction disturbances caused by electrical and/or structural remodelling. In the present study, we hypothesized that connexin might interact with the calcium channel through forming a protein complex and, then, participates in the pathogenesis of AF. Western blot and whole-cell patch clamp showed that protein levels of Cav1.2 and connexin 43 (Cx43) and basal ICa,L were decreased in AF subjects compared to sinus rhythm (SR) controls. In cultured atrium-derived myocytes (HL-1 cells), knocking-down of Cx43 or incubation with 30 mmol/L glycyrrhetinic acid significantly inhibited protein levels of Cav1.2 and Cav3.1 and the current density of ICa,L and ICa,T . Incubation with nifedipine or mibefradil decreased the protein level of Cx43 in HL-1 cells. Moreover, Cx43 was colocalized with Cav1.2 and Cav3.1 in atrial myocytes. Therefore, Cx43 might regulate the ICa,L and ICa,T through colocalization with calcium channel subunits in atrial myocytes, representing a potential pathogenic mechanism in AF.


Subject(s)
Atrial Remodeling , Calcium Channels/physiology , Connexin 43/physiology , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Animals , Atrial Fibrillation/metabolism , Atrial Remodeling/physiology , Blotting, Western , Calcium Channels/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/physiology , Cell Line , Cells, Cultured , Connexin 43/metabolism , Heart Atria/drug effects , Heart Atria/physiopathology , Humans , Mibefradil/pharmacology , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Nifedipine/pharmacology , Patch-Clamp Techniques
9.
PeerJ ; 9: e11488, 2021.
Article in English | MEDLINE | ID: mdl-34141473

ABSTRACT

Atrial fibrillation is the most common form of cardiac arrhythmia. Atrial fibrosis is a significant feature of atrial fibrillation though its mechanism is not well understood. We searched the Gene Expression Omnibus database to compare mRNA expression patterns between atrial fibrillation and sinus rhythm samples; one hundred and forty eight differentially expressed genes were identified. Most of these genes were significantly enriched in the extracellular matrix organization process and collagen-activated tyrosine kinase receptor signaling pathway. To screen hub genes involved in atrial fibrosis, we constructed a protein-protein interaction network and found that three hub genes (SERPINE1/plasminogen activator inhibitor-1/PAI-1, TIMP Metallopeptidase Inhibitor 3/TIMP3 and decorin/DCN) play vital roles in atrial fibrosis, especially plasminogen activator inhibitor-1. Elevated plasminogen activator inhibitor-1 expression was positively correlated with the p53 signaling pathway. Plasminogen activator inhibitor-1 and p53 protein expression levels were verified in patients with sinus rhythm and atrial fibrillation by Western blot analysis. Compared with the sinus rhythm controls, p53 and plasminogen activator inhibitor-1 protein expressions were upregulated in the atrial tissues of patients with atrial fibrillation. p53 was also found to regulate plasminogen activator inhibitor-1 based on the results of cellular and molecular experiments. Thus, the p53/plasminogen activator inhibitor-1 signaling axis may participate in the pathophysiological processes of atrial fibrillation, and plasminogen activator inhibitor-1 may serve as a new therapeutic biomarker in atrial fibrillation.

10.
Clin Exp Pharmacol Physiol ; 48(7): 996-1006, 2021 07.
Article in English | MEDLINE | ID: mdl-33792963

ABSTRACT

BACKGROUND: Thromboxane A2 (TXA2 ) participates in many pathophysiological processes of coronary artery disease. However, its mechanism of TXA2 -induced contraction in the coronary artery remains to be clarified. A multi myograph system was used to measure the isometric tension of the mouse coronary arteries and identify the effect and pathway of TXA2 analogues U46619. Confocal laser scanning microscopy was used to measure the intracellular calcium concentration ([Ca2+ ]i ) in mouse coronary artery smooth muscle cells. Results from the experiment had shown that contraction in coronary artery was generated by U46619 in a concentration-dependent manner, which was completely abolished by a specific TXA2 receptor blocker, GR32191. PI-PLC inhibitors U73122 and D609 and Rho-Kinase inhibitor Y-27632 can block the U46619 elicited coronary artery contraction in a dose-dependent manner. Then, the vasoconstriction response to U46619 was obviously inhibited by two pan-PKC inhibitors chelerythrine or GÓ§6983, and a selective PKCδ inhibitor rottlerin, but was not blocked by a selective PKCζ inhibitor PKC-PS or a selective PKCß inhibitor hispidin. Meanwhile, the PKC activator PDBu-induced vasoconstriction was significantly inhibited by 1 µmol/L nifedipine, then mostly inhibited by 100 µmol/L 2-APB and 10 µmol/L Y27632. We further found that the response to U46619 was inhibited, respectively, by three calcium channel blockers nifedipine, SKF96356 or 2-APB in a concentration-dependent manner. Although Store-operated Ca2+ (SOC) channels generated the increase of [Ca2+ ]i in mouse coronary artery smooth muscle cells, SOC channels did not contribute to the vasoconstriction in mouse coronary arteries. Caffeine-induced sarcoplasmic reticulum (SR) Ca2+ release could obviously induce coronal vasoconstriction. In addition, NPPB, a cell membrane Ca2+ activated C1- channel blocker, could obviously inhibit the U46619-induced vasoconstriction. The U46619-induced mouse coronary artery contraction was involved in the increase in [Ca2+ ]i mediated by Cav1.2, TRPC channels and SR release through the activation of G-protein-coupled TP receptors and the kinases signalling pathway in TP downstream proteins, while SOC channels did not participate in the vasoconstriction.


Subject(s)
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid , Animals , Coronary Vessels , Mice , Muscle, Smooth, Vascular , Vasoconstriction , Vasoconstrictor Agents
11.
Front Pharmacol ; 12: 586973, 2021.
Article in English | MEDLINE | ID: mdl-33762934

ABSTRACT

It is widely accepted that genetic polymorphisms impact atorvastatin (ATV) metabolism, clinical efficacy, and adverse events. The objectives of this study were to identify novel genetic variants influencing ATV metabolism and outcomes in Chinese patients with coronary artery disease (CAD). A total of 1079 CAD patients were enrolled and followed for 5 years. DNA from the blood and human liver tissue samples were genotyped using either Global Screening Array-24 v1.0 BeadChip or HumanOmniZhongHua-8 BeadChip. Concentrations of ATV and its metabolites in plasma and liver samples were determined using a verified ultra-performance liquid chromatography mass spectrometry (UPLC-MS/MS) method. The patients carrying A allele for the rs4148323 polymorphism (UGT1A1) showed an increase in 2-hydroxy ATV/ATV ratio (p = 1.69E-07, false discovery rate [FDR] = 8.66E-03) relative to the value in individuals without the variant allele. The result was further validated by an independent cohort comprising an additional 222 CAD patients (p = 1.08E-07). Moreover, the rs4148323 A allele was associated with an increased risk of death (hazard ratio [HR] 1.774; 95% confidence interval [CI], 1.031-3.052; p = 0.0198). In conclusion, our results suggested that the UGT1A1 rs4148323 A allele was associated with increased 2-hydroxy ATV formation and was a significant death risk factor in Chinese patients with CAD.

12.
Cell Death Dis ; 12(2): 216, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637715

ABSTRACT

Mitochondrial dysfunction and impaired Ca2+ handling are involved in the development of diabetic cardiomyopathy (DCM). Dynamic relative protein 1 (Drp1) regulates mitochondrial fission by changing its level of phosphorylation, and the Orai1 (Ca2+ release-activated calcium channel protein 1) calcium channel is important for the increase in Ca2+ entry into cardiomyocytes. We aimed to explore the mechanism of Drp1 and Orai1 in cardiomyocyte hypertrophy caused by high glucose (HG). We found that Zucker diabetic fat rats induced by administration of a high-fat diet develop cardiac hypertrophy and impaired cardiac function, accompanied by the activation of mitochondrial dynamics and calcium handling pathway-related proteins. Moreover, HG induces cardiomyocyte hypertrophy, accompanied by abnormal mitochondrial morphology and function, and increased Orai1-mediated Ca2+ influx. Mechanistically, the Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1) prevents cardiomyocyte hypertrophy induced by HG by reducing phosphorylation of Drp1 at serine 616 (S616) and increasing phosphorylation at S637. Inhibition of Orai1 with single guide RNA (sgOrai1) or an inhibitor (BTP2) not only suppressed Drp1 activity and calmodulin-binding catalytic subunit A (CnA) and phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) expression but also alleviated mitochondrial dysfunction and cardiomyocyte hypertrophy caused by HG. In addition, the CnA inhibitor cyclosporin A and p-ERK1/2 inhibitor U0126 improved HG-induced cardiomyocyte hypertrophy by promoting and inhibiting phosphorylation of Drp1 at S637 and S616, respectively. In summary, we identified Drp1 as a downstream target of Orai1-mediated Ca2+ entry, via activation by p-ERK1/2-mediated phosphorylation at S616 or CnA-mediated dephosphorylation at S637 in DCM. Thus, the Orai1-Drp1 axis is a novel target for treating DCM.


Subject(s)
Blood Glucose/metabolism , Diabetic Cardiomyopathies/metabolism , Dynamins/metabolism , Hypertrophy, Left Ventricular/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Dynamics , Myocytes, Cardiac/metabolism , ORAI1 Protein/metabolism , Animals , Calcium Signaling , Cells, Cultured , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice , Mitochondria, Heart/genetics , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/ultrastructure , ORAI1 Protein/genetics , Phosphorylation , Rats, Sprague-Dawley , Rats, Zucker , Ventricular Function, Left , Ventricular Remodeling
13.
Clin Exp Pharmacol Physiol ; 48(5): 726-734, 2021 05.
Article in English | MEDLINE | ID: mdl-33565136

ABSTRACT

BTP2 is a potent inhibitor of store-operated Ca2+ entry (SOCE), which plays a vital role in vasoconstriction. However, the direct effect of BTP2 on the contractile response remains unclear. Here, we investigated the effects and mechanisms of action of BTP2 in the mouse aorta. Isometric tension was measured using a Multi Myograph System with two stainless steel wires. Ca2+ transient was recorded by confocal laser scanning microscope. The results showed that BTP2 markedly suppressed vasoconstriction mediated by SOCE and Ca2+ influx mediated by SOCE. The cumulative concentration of BTP2 had no effect on the baseline of mouse aortic rings, whereas it increased vasoconstriction stimulated by 3 µmol/L Phenylephrine. BTP2 (1 µmol/L) significantly increased vasoconstriction induced by 3 µmol/L Phe or cumulative concentration. BTP2 also promoted noradrenaline-induced aortic contraction. However, Phe- and noradrenaline-induced contraction was not affected by 0.3 or 3 µmol/L BTP2, and BTP2 at 10 µmol/L significantly suppressed aortic contraction. BTP2 inhibited 5-HT-evoked contraction in a concentration-dependent manner. BTP2 at higher concentrations (>3 µmol/L) inhibited CaCl2 -induced and 60 mmol/L K+ -induced contraction with progressive reduction of maximal contraction in a concentration-dependent manner. These results suggest that 1 µmol/L BTP2 increases contraction evoked by α1 adrenoreceptor activation. BTP2 at higher concentrations may inhibit Cav1.2 channels.


Subject(s)
Aorta , Vasoconstriction , Animals , Calcium Channels , Mice
14.
Clin Exp Pharmacol Physiol ; 48(3): 435-442, 2021 03.
Article in English | MEDLINE | ID: mdl-32966616

ABSTRACT

The atrial-specific ultra-rapid delayed rectifier K+ current (Ikur) plays an important role in the progression of atrial fibrillation (AF). Because inflammation is known to lead to the onset of AF, we aimed to investigate whether tumour necrosis factor-α (TNF-α) played a role in regulating Ikur and the potential signalling pathways involved. Whole-cell patch-clamp and biochemical assays were used to study the regulation and expression of Ikur in myocytes and in tissues from left atrial appendages (LAAs) obtained from patients with sinus rhythm (SR) or AF, as well as in rat cardiomyocytes (H9c2 cells) and mouse atrial myocytes (HL-1 cells). Ikur current density was markedly reduced in atrial myocytes from AF patients compared with SR controls. Reduction of Kv1.5 protein levels was accompanied by increased expression of TNF-α and protein kinase C (PKC)α activation in AF patients. Treatment with TNF-α dose-dependently reduced Ikur and protein expression of Kv1.5 but not Kv3.1b in H9c2 cells and HL-1 cells. TNF-α also increased activity of PKCα. Specific PKCα inhibitor Gö6976 alleviated the reduction in Ikur induced by TNF-α, but not the reduction in Kv1.5 protein. TNF-α was involved in the electrical remodelling associated with AF, probably by depressing Ikur in atrial myocytes via activation of PKCα.


Subject(s)
Tumor Necrosis Factor-alpha , Animals , Heart Atria/metabolism , Mice , Myocytes, Cardiac , Protein Kinase C-alpha/metabolism , Rats
15.
J Mol Cell Cardiol ; 141: 82-92, 2020 04.
Article in English | MEDLINE | ID: mdl-32222458

ABSTRACT

Vascular dysfunction is a common pathological basis for complications in individuals affected by diabetes. Previous studies have established that endothelial dysfunction is the primary contributor to vascular complications in type 2 diabetes (T2DM). However, the role of vascular smooth muscle cells (VSMCs) in vascular complications associated with T2DM is still not completely understood. The aim of this study is to explore the potential mechanisms associated with Ca2+ handling dysfunction and how this dysfunction contributes to diabetic vascular smooth muscle impairment. The results indicated that endothelium-dependent vasodilation was impaired in diabetic aortae, but endothelium-independent vasodilation was not altered. Various vasoconstrictors such as phenylephrine, U46619 and 5-HT could induce vasoconstriction in a concentration-dependent manner, such that the dose-response curve was parallel shifted to the right in diabetic aortae, compared to the control. Vasoconstrictions mediated by L-type calcium (Cav1.2) channels were attenuated in diabetic aortae, but effects mediated by store-operated calcium (SOC) channels were enhanced. Intracellular Ca2+ concentration ([Ca2+]i) in VSMCs was detected by Fluo-4 calcium fluorescent probes, and demonstrated that SOC-mediated Ca2+ entry was increased in diabetic VSMCs. VSMC-specific knockout of STIM1 genes decreased SOC-mediated and phenylephrine-induced vasoconstrictive response in mice aortae. Additionally, Orai1 expression was up-regulated, Cav1.2 expression was downregulated, and the phenotypic transformation of diabetic VSMCs was determined in diabetic aortae. The overexpression of Orai1 markedly promoted the OPN expression of VSMCs, whereas SKF96365 (SOC channel blocker) reversed the phenotypic transformation of diabetic VSMCs. Our results demonstrated that the vasoconstriction response of aortic smooth muscle was weakened in type 2 diabetic rats, which was related to the downregulation of the Cav1.2 channel and the up-regulation of the SOC channel signaling pathway.


Subject(s)
Aorta/physiopathology , Calcium Signaling , Calcium/metabolism , Diabetes Mellitus, Experimental/physiopathology , Muscle Contraction/physiology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Animals , Biomarkers/metabolism , Calcium Channels/metabolism , Diabetes Mellitus, Experimental/blood , Gene Knockdown Techniques , Inhibitory Concentration 50 , Male , Phenotype , Phenylephrine/pharmacology , Rats, Zucker , Stromal Interaction Molecule 1/metabolism , Vasoconstriction , Vasodilation/physiology
16.
J Mol Cell Cardiol ; 140: 10-21, 2020 03.
Article in English | MEDLINE | ID: mdl-32006532

ABSTRACT

Hypertension is an independent risk factor for atrial fibrillation (AF), although its specific mechanisms remain unclear. Previous research has been focused on cyclic stretch, ignoring the role of high hydrostatic pressure. The present study aimed to explore the effect of high hydrostatic pressure stimulation on electrical remodeling in atrial myocytes and its potential signaling pathways. Experiments were performed on left atrial appendages from patients with chronic AF or sinus rhythm, spontaneously hypertensive rats (SHRs) treated with or without valsartan (10 mg/kg/day) and HL-1 cells were exposed to high hydrostatic pressure using a self-developed device. Whole-cell patch-clamp recordings and western blots demonstrated that the amplitudes of ICa,L, Ito, and IKur were reduced in AF patients with corresponding changes in protein expression. Angiotensin protein levels increased and Ang1-7 decreased, while focal adhesion kinase (FAK) and Src kinase were enhanced in atrial tissue from AF patients and SHRs. After rapid atrial pacing, AF inducibility in SHR was significantly higher, accompanied by a decrease in ICa,L, upregulation of Ito and IKur, and a shortened action potential duration. Angiotensin upregulation and FAK/Src activation in SHR were inhibited by angiotensin type 1 receptor inhibitor valsartan, thus, preventing electrical remodeling and reducing AF susceptibility. These results were verified in HL-1 cells treated with high hydrostatic pressure, and demonstrated that electrical remodeling regulated by the FAK-Src pathway could be modulated by valsartan. The present study indicated that high hydrostatic pressure stimulation increases AF susceptibility by activating the renin-angiotensin system and FAK-Src pathway in atrial myocytes.


Subject(s)
Angiotensin II/metabolism , Angiotensin I/metabolism , Atrial Remodeling/drug effects , Focal Adhesion Kinase 1/metabolism , Peptide Fragments/metabolism , Up-Regulation/drug effects , src-Family Kinases/metabolism , Animals , Anti-Arrhythmia Agents/pharmacology , Atrial Appendage/metabolism , Atrial Fibrillation/pathology , Cell Line, Tumor , Humans , Hydrostatic Pressure , Mice , Myocytes, Cardiac/metabolism , Rats , Rats, Inbred SHR , Receptor, Angiotensin, Type 1/metabolism , Valsartan/pharmacology
17.
Naunyn Schmiedebergs Arch Pharmacol ; 393(11): 2165-2176, 2020 11.
Article in English | MEDLINE | ID: mdl-31980857

ABSTRACT

Hypertension is one of the risk factors for coronary heart disease. The present study investigated the mechanism of contractile dysfunction induced by serotonin (5-HT) in coronary artery in spontaneously hypertensive rats (SHRs). Coronary arteries were isolated form SHRs and Wistar rats. Arterial ring contraction was measured using a multi myograph system. Intracellular calcium concentration was measured with a Ca2+ probe fluo-4/AM in vascular smooth muscle cells (VSMCs) isolated from coronary arteries. Signaling pathway-related proteins were assayed by western blotting. A 5-HT2A receptor blocker, sarpogrelate, completely eliminated coronary artery contraction induced by 5-HT. PLCß inhibitor U73122 also significantly inhibited the response to 5-HT. Compared with the Wistar rats, serotonin (5-HT)- and CaCl2-induced coronary vasoconstriction in the SHRs was significantly reduced. Rho-associated protein kinase inhibitor Y27632, PKC inhibitor rottlerin, and L-type calcium channel blocker nifedipine inhibited the 5-HT-induced coronary artery contraction in a dose-dependent manner in SHRs and Wistar rats. However, the inhibitory effects were reduced in SHRs. In addition, store-operated Ca2+ (SOC) induced an obvious Ca2+ influx in coronary arterial smooth muscle cells, whereas SOC-mediated contraction was very slight in coronary arteries. At the same time, it was found that 5-HT2AR, IP3R, and Cav1.2 protein expression and PKCδ activity were decreased, and STIM1 and Orai1 were increased in VSMCs from coronary arteries of SHRs compared with Wistar rats. These results implicate calcium-handling dysfunction mediated by the 5-HT2A receptor and downstream signaling pathway might lead to a reduction in 5-HT-induced contraction in SHR coronary arteries.


Subject(s)
Hypertension/physiopathology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Receptor, Serotonin, 5-HT2A/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin/pharmacology , Vasoconstriction/drug effects , Animals , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Disease Models, Animal , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Rats, Inbred SHR , Rats, Wistar , Receptor, Serotonin, 5-HT2A/metabolism
18.
Life Sci ; 242: 117209, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31870776

ABSTRACT

AIMS: Hypertension is an independent risk factor for atrial fibrillation (AF). However, the direct effect of hydrostatic pressure on atrial electrical remodeling is unclear. The present study investigated whether hydrostatic pressure is responsible for atrial electrical remodeling and addressed a potential role of inflammation in this pathology. MAIN METHODS: Whole-cell patch-clamp recordings and biochemical assays were used to study the regulation and expression of ion channels in left atrial appendages in patients with AF, spontaneously hypertensive rats (SHRs), and atrium-derived cells (HL-1 cells) exposed to standard (0 mmHg) and elevated (20, 40 mmHg) hydrostatic pressure. KEY FINDINGS: Both TNF-α and MIF were highly expressed in patients with AF and SHRs. AF inducibility in SHRs was higher after atrial burst pacing, accompanied by a decrease in the L-type calcium current (ICa,L), an increase in the transient outward K+ current (Ito) and ultra-rapid delayed rectifier K+ current (IKur), and a shortened action potential duration (APD), which could be inhibited by atorvastatin. Furthermore, exposure to elevated pressure was associated with electrical remodeling of the HL-1 cells. The peak current density of ICa,L was reduced, while Ito and IKur were increased. Moreover, the expression levels of Kv4.3, Kv1.5, TNF-α, and MIF were upregulated, while the expression of Cav1.2 was downregulated in HL-1 cells after treatment with high hydrostatic pressure (40 mmHg). Atorvastatin alleviated the electrical remodeling and increased inflammatory markers in HL-1 cells induced by high hydrostatic pressure. SIGNIFICANCE: Elevated hydrostatic pressure led to atrial electrical remodeling and increased AF susceptibility by upregulating inflammation.


Subject(s)
Atrial Remodeling , Cytokines/metabolism , Hydrostatic Pressure/adverse effects , Adult , Animals , Blotting, Western , Female , Heart Atria/metabolism , Humans , Male , Middle Aged , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Rats, Inbred SHR , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
19.
J Vasc Res ; 56(4): 191-203, 2019.
Article in English | MEDLINE | ID: mdl-31390638

ABSTRACT

BACKGROUND: Ca2+ plays an important role in the regulation of vasoconstriction. Ca2+ signaling is regulated by a number of Ca2+-handling proteins. However, whether differences in Ca2+ handling affect the regulation of vasoconstriction in different arteries remains elusive. OBJECTIVE: To determine whether differences in Ca2+ handling affect the response to vasoconstrictors in different arteries. METHODS: Arterial ring contraction was measured using a Multi Myograph System. Vascular smooth muscle cells (VSMCs) were digested with type 2 collagenase in DMEM, then intracellular calcium concentration was measured with the Ca2+ probe fluo-4/AM in the isolated cells. Calcium-related proteins were assayed by Western blotting. RESULTS: Phenylephrine did not induce -coronary arterial contraction. There were differences in -5-hydroxytryptamine, 9,11-dideoxy-11a,9a-epoxymethano-prostaglandin F2a, and endothelin 1-induced vasoconstriction in different solutions between coronary and renal arteries. Vasoconstrictions in the presence of Bay K8644 were stronger in coronary than in renal arteries. Store-operated calcium (SOC) channels could mediate Ca2+ influx in VSMCs of both groups. SOC channels did not participate in the contraction of coronary arteries. In addition, there were significant differences in the expressions of receptors and ion channels between the two groups. CONCLUSIONS: Ca2+ handling contributed to the different responses to vasoconstrictors between coronary and renal arteries.


Subject(s)
Calcium Signaling , Calcium , Coronary Vessels/metabolism , Renal Artery/metabolism , Vasoconstriction , Animals , Calcium Signaling/drug effects , Coronary Vessels/drug effects , In Vitro Techniques , Male , Rats, Wistar , Renal Artery/drug effects , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology
20.
Clin Exp Pharmacol Physiol ; 46(7): 643-651, 2019 07.
Article in English | MEDLINE | ID: mdl-30907443

ABSTRACT

Thromboxane A2 (TXA2 ) has been implicated in the pathogenesis of vascular complications, but the underlying mechanism remains unclear. The contraction of renal arterial rings in mice was measured by a Multi Myograph System. The intracellular calcium concentration ([Ca2+ ]i ) in vascular smooth muscle cells (VSMCs) was obtained by using a fluo-4/AM dye and a confocal laser scanning microscopy. The results show that the U46619-induced vasoconstriction of renal artery was completely blocked by a TXA2 receptor antagonist GR32191, significantly inhibited by a selective phospholipase C (PI-PLC) inhibitor U73122 at 10 µmol/L and partially inhibited by a Phosphatidylcholine - specific phospholipase C (PC-PLC) inhibitor D609 at 50 µmol/L. Moreover, the U46619-induced vasoconstriction was inhibited by a general protein kinase C (PKC) inhibitor chelerythrine at 10 µmol/L, and a selective PKCδ inhibitor rottlerin at 10 µmol/L. In addition, the PKC-induced vasoconstriction was partially inhibited by a Rho-kinase inhibitor Y-27632 at 10 µmol/L and was further completely inhibited together with a putative IP3 receptor antagonist and store-operated Ca2+ (SOC) entry inhibitor 2-APB at 100 µmol/L. On the other hand, U46619-induced vasoconstriction was partially inhibited by L-type calcium channel (Cav1.2) inhibitor nifedipine at 1 µmol/L and 2-APB at 50 and 100 µmol/L. Last, U46619-induced vasoconstriction was partially inhibited by a cell membrane Ca2+ activated C1- channel blocker 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) at 50 and 100 µmol/L. Our results suggest that the U46619-induced contraction of mouse intrarenal arteries is mediated by Cav1.2 and SOC channel, through the activation of thromboxane-prostanoid receptors and its downstream signaling pathway.


Subject(s)
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Arteries/drug effects , Arteries/physiology , Vasoconstriction/drug effects , Animals , Calcium Channels/metabolism , Chloride Channels/antagonists & inhibitors , Kidney/blood supply , Male , Mice , Mice, Inbred C57BL , Type C Phospholipases/metabolism , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...