Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(11): 5235-5245, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38452249

ABSTRACT

Cancer treatment has faced severe obstacles due to the smart biological system of cancer cells. Herein, we report a three-in-one agent Ir-CA via attenuation of cancer cell stemness with the down-regulated biomarker CD133 expression from the mitochondria-directed chemotherapy. Over 80% of Ir-CA could accumulate in mitochondria, result in severe mitochondrial dysfunctions, and subsequently initiate mitophagy and cell cycle arrest to kill cisplatin-resistant A549R cells. In vitro and in vivo antimetastatic experiments demonstrated that Ir-CA can effectively inhibit metastasis with down-regulated MMP-2/MMP-9. RNA seq analysis and Western blotting indicated that Ir-CA also suppresses the GSTP1 expression to decrease the intracellular Pt-GS adducts, resulting in the detoxification and resensitization to cisplatin of A549R cells. In vivo evaluation indicated that Ir-CA restrains the tumor growth and has minimal side effects and superior biocompatibility. This work not only provides the first three-in-one agent to attenuate cancer cell stemness and simultaneously realize anticancer, antimetastasis, and conquer metallodrug resistance but also demonstrates the effectiveness of the mitochondria-directed strategy in cancer treatment.


Subject(s)
Antineoplastic Agents , Neoplasms , Cisplatin/pharmacology , Cell Line, Tumor , Cell Cycle , Mitochondria , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Neoplasms/metabolism
2.
Inorg Chem ; 63(10): 4758-4769, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38408314

ABSTRACT

The efficiency of nitrogen mustards (NMs), among the first chemotherapeutic agents against cancer, is limited by their monotonous mechanism of action (MoA). And tumor hypoxia is a significant obstacle in the attenuation of the chemotherapeutic efficacy. To repurpose the drug and combat hypoxia, herein, we constructed an organo-Ir(III) prodrug, IrCpNM, with the composition of a reactive oxygen species (ROS)-inducing moiety (Ir-arene fragment)-a hypoxic responsive moiety (azo linker)-a DNA-alkylating moiety (nitrogen mustard), and realized DNA damage response (DDR)-mediated autophagy for hypoxic lung cancer therapy for the first time. Prodrug IrCpNM could upregulate the level of catalase (CAT) to catalyze the decomposition of excessive H2O2 to O2 and downregulate the expression of the hypoxia-inducible factor (HIF-1α) to relieve hypoxia. Subsequently, IrCpNM initiates the quadruple synergetic actions under hypoxia, as simultaneous ROS promotion and glutathione (GSH) depletion to enhance the redox disbalance and severe oxidative and cross-linking DNA damages to trigger the occurrence of DDR-mediated autophagy via the ATM/Chk2 cascade and the PIK3CA/PI3K-AKT1-mTOR-RPS6KB1 signaling pathway. In vitro and in vivo experiments have confirmed the greatly antiproliferative capacity of IrCpNM against the hypoxic solid tumor. This work demonstrated the effectiveness of the DNA damage-responsive organometallic prodrug strategy with the microenvironment targeting system and the rebirth of traditional chemotherapeutic agents with a new anticancer mechanism.


Subject(s)
Lung Neoplasms , Prodrugs , Humans , Reactive Oxygen Species/metabolism , Prodrugs/pharmacology , Lung Neoplasms/drug therapy , Hydrogen Peroxide , Hypoxia , Autophagy , DNA Damage , DNA , Cell Line, Tumor , Tumor Microenvironment
3.
ChemMedChem ; 17(16): e202200273, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35726053

ABSTRACT

The resistance of cancer cells to cisplatin has dramatically blocked the further application of this drug in practical treatment settings. The generation of cisplatin resistance is a complex physiological process, and several mechanisms have been reported for this. New metal-based agents with distinct anticancer mechanisms are still highly desired. In this concept article, we describe Ir(III)-based anticancer agents and their underlying anticancer mechanisms, which could inhibit the proliferation of cisplatin-resistant tumors. This work could be beneficial in developing more effective Ir(III)-based agents to combat cisplatin resistance.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...