Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Tissue Eng Part A ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38818810

ABSTRACT

Therapy with mesenchymal stem cells (MSCs) is considered an attractive strategy for the repair or regeneration of damaged tissues. However, low survival of MSCs limits their applications clinically. Oxidized low-density lipoprotein (ox-LDL) is significantly increased in patients with hyperlipidemia and decreases the survival of MSCs. Bcl-2 is critically involved in important cell functions, including cell membrane integrity and cell survival. The present study was designed to test the hypothesis that ox-LDL attenuates the survival of MSCs through suppression of Bcl-2 expression. Bone marrow MSCs from C57BL/6 mice were cultured with ox-LDL at different concentrations (0-140 µg/mL) for 24 h with native LDL as control. Ox-LDL treatment substantially decreased the survival of MSCs dose-dependently and enhanced the release of intracellular lactate dehydrogenase (LDH) in association with a significant decrease in Bcl-2 protein level without change in BAX protein expression in MSCs. Bcl-2 overexpression effectively protected MSCs against ox-LDL-induced damages with preserved cell numbers without significant increase in LDH release. Treatment with N-acetylcysteine (NAC) (1 mM) effectively preserved Bcl-2 protein expression in MSCs and significantly attenuated ox-LDL-induced decrease of cell number and increase in the release of intracellular LDH. These data indicated that ox-LDL treatment resulted in a significant damage of cell membrane and dramatically decreased the survival of MSCs dose-dependently through inhibition of Bcl-2 expression. NAC treatment significantly protected MSCs against the damage of cell membrane by ox-LDL and promoted the survival of MSCs in association with preserved Bcl-2 expression.

2.
Oncol Lett ; 17(1): 706-712, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30655820

ABSTRACT

Downregulation of microRNA-34a (miR-34a) has frequently been observed in esophageal squamous cell carcinoma (ESCC). However, the underlying role and molecular mechanism of miR-34a in ESCC remains largely unknown. In the current study, it was demonstrated that miR-34a was downregulated and forkhead box M1 (FOXM1), a target gene of miR-34a, was upregulated in ESCC tumor tissues. Overexpression of miR-34a decreased FOXM1 mRNA and protein expression in the ESCC cell lines tested (TE-1 and TE-8). Inhibition of miR-34a increased FOXM1 mRNA and protein levels in human esophageal epithelial cells (HEEC). In addition, miR-34a mimics reduced the relative luciferase activity of ESCC cells transfected with FOXM1 3'UTR-WT, but not FOXM1 3'UTR-Mut. The CCK8 assay and scratch wound healing assay showed that overexpression of miR-34a induced inhibition of cell proliferation and cell migration. Additionally, transfection with miR-34a mimics reduced the expression of key genes involved in cell migration (MMP2 and MMP9) in ESCC cells. Thus, the present data demonstrated that miR-34a suppressed ESCC progression by directly targeting FOXM1.

3.
Front Cell Dev Biol ; 4: 116, 2016.
Article in English | MEDLINE | ID: mdl-27826548

ABSTRACT

Individual cell heterogeneity within a population can be critical to its peculiar function and fate. Subpopulations studies with mixed mutants and wild types may not be as informative regarding which cell responds to which drugs or clinical treatments. Cell to cell differences in RNA transcripts and protein expression can be key to answering questions in cancer, neurobiology, stem cell biology, immunology, and developmental biology. Conventional cell-based assays mainly analyze the average responses from a population of cells, without regarding individual cell phenotypes. To better understand the variations from cell to cell, scientists need to use single cell analyses to provide more detailed information for therapeutic decision making in precision medicine. In this review, we focus on the recent developments in single cell isolation and analysis, which include technologies, analyses and main applications. Here, we summarize the historical background, limitations, applications, and potential of single cell isolation technologies.

4.
BMC Cancer ; 14: 456, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24947048

ABSTRACT

BACKGROUND: Therapeutic decisions in cancer are generally guided by molecular biomarkers or, for some newer therapeutics, primary tumor genotype. However, because biomarkers or genotypes may change as new metastases emerge, circulating tumor cells (CTCs) from blood are being investigated for a role in guiding real-time drug selection during disease progression, expecting that CTCs will comprehensively represent the full spectrum of genomic changes in metastases. However, information is limited regarding mutational heterogeneity among CTCs and metastases in breast cancer as discerned by single cell analysis. The presence of disseminated tumor cells (DTCs) in bone marrow also carry prognostic significance in breast cancer, but with variability between CTC and DTC detection. Here we analyze a series of single tumor cells, CTCs, and DTCs for PIK3CA mutations and report CTC and corresponding metastatic genotypes. METHODS: We used the MagSweeper, an immunomagnetic separation device, to capture live single tumor cells from breast cancer patients' primary and metastatic tissues, blood, and bone marrow. Single cells were screened for mutations in exons 9 and 20 of the PIK3CA gene. Captured DTCs grown in cell culture were also sequenced for PIK3CA mutations. RESULTS: Among 242 individual tumor cells isolated from 17 patients and tested for mutations, 48 mutated tumor cells were identified in three patients. Single cell analyses revealed mutational heterogeneity among CTCs and tumor cells in tissues. In a patient followed serially, there was mutational discordance between CTCs, DTCs, and metastases, and among CTCs isolated at different time points. DTCs from this patient propagated in vitro contained a PIK3CA mutation, which was maintained despite morphological changes during 21 days of cell culture. CONCLUSIONS: Single cell analysis of CTCs can demonstrate genotypic heterogeneity, changes over time, and discordance from DTCs and distant metastases. We present a cautionary case showing that CTCs from any single blood draw do not always reflect metastatic genotype, and that CTC and DTC analyses may provide independent clinical information. Isolated DTCs remain viable and can be propagated in culture while maintaining their original mutational status, potentially serving as a future resource for investigating new drug therapies.


Subject(s)
Bone Marrow/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Mutation , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Phosphatidylinositol 3-Kinases/genetics , Single-Cell Analysis , Class I Phosphatidylinositol 3-Kinases , DNA Mutational Analysis , Exons , Female , Humans , Neoplasm Metastasis , Single-Cell Analysis/methods
5.
Breast Cancer Res ; 16(2): R36, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24708766

ABSTRACT

INTRODUCTION: Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in TNBC cell lines. We describe a panel of patient-derived xenografts representing multiple TNBC subtypes and use them to test preclinical drug efficacy of two mTOR inhibitors, sirolimus (rapamycin) and temsirolimus (CCI-779). METHODS: We generated a panel of seven patient-derived orthotopic xenografts from six primary TNBC tumors and one metastasis. Patient tumors and corresponding xenografts were compared by histology, immunohistochemistry, array comparative genomic hybridization (aCGH) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) sequencing; TNBC subtypes were determined. Using a previously published logistic regression approach, we generated a rapamycin response signature from Connectivity Map gene expression data and used it to predict rapamycin sensitivity in 1,401 human breast cancers of different intrinsic subtypes, prompting in vivo testing of mTOR inhibitors and doxorubicin in our TNBC xenografts. RESULTS: Patient-derived xenografts recapitulated histology, biomarker expression and global genomic features of patient tumors. Two primary tumors had PIK3CA coding mutations, and five of six primary tumors showed flanking intron single nucleotide polymorphisms (SNPs) with conservation of sequence variations between primary tumors and xenografts, even on subsequent xenograft passages. Gene expression profiling showed that our models represent at least four of six TNBC subtypes. The rapamycin response signature predicted sensitivity for 94% of basal-like breast cancers in a large dataset. Drug testing of mTOR inhibitors in our xenografts showed 77 to 99% growth inhibition, significantly more than doxorubicin; protein phosphorylation studies indicated constitutive activation of the mTOR pathway that decreased with treatment. However, no tumor was completely eradicated. CONCLUSIONS: A panel of patient-derived xenograft models covering a spectrum of TNBC subtypes was generated that histologically and genomically matched original patient tumors. Consistent with in silico predictions, mTOR inhibitor testing in our TNBC xenografts showed significant tumor growth inhibition in all, suggesting that mTOR inhibitors can be effective in TNBC, but will require use with additional therapies, warranting investigation of optimal drug combinations.


Subject(s)
Antineoplastic Agents/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Blotting, Western , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Comparative Genomic Hybridization , DNA Mutational Analysis , Doxorubicin/therapeutic use , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunohistochemistry , MCF-7 Cells , Mice , Mutation , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sirolimus/analogs & derivatives , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcriptome/drug effects , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
6.
PLoS One ; 7(5): e33788, 2012.
Article in English | MEDLINE | ID: mdl-22586443

ABSTRACT

BACKGROUND: To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. CONCLUSIONS/SIGNIFICANCE: For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs on a cell-by-cell basis is possible and may facilitate the application of 'liquid biopsies' to better model drug discovery.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating , Single-Cell Analysis/instrumentation , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Expression Profiling , Humans , Lymphoma/blood , Microarray Analysis/methods , Microfluidic Analytical Techniques , Neoplasm Metastasis , Neoplastic Cells, Circulating/metabolism , Single-Cell Analysis/methods
7.
Breast Cancer Res ; 10(4): R69, 2008.
Article in English | MEDLINE | ID: mdl-18687126

ABSTRACT

INTRODUCTION: Circulating tumor cells (CTCs) are detectable in most cancer patients and they can meet an existing medical need to monitor cancer patients during a course of treatment and to help determine recurrent disease. CTCs are rarely found in the blood of cancer patients and enrichment is necessary for sensitive CTC detection. Most CTC enrichment technologies are anti-EpCAM antibody based even though CTC identification criteria are cytokeratin positive (CK+), CD45 negative (CD45-) and 4'6-diamidino-2-phenylindole (nuclear stain) positive (DAPI+). However, some tumor cells express low or no EpCAM. Here we present a highly sensitive and reproducible enrichment method that is based on binding to anti-CK alone or a combination of anti-CK and anti-EpCAM antibodies. METHODS: Blood samples from 49 patients with metastatic breast cancer were processed using the CellSearchtrade mark system (Veridex, LLC, Raritan, NJ, USA), in parallel with our CTC assay method. We used anti-CK alone or in combination with anti-EpCAM antibodies for CTC enrichment. Brightfield and fluorescence labeled anti-CK, anti-CD45 and DAPI (nuclear stain) images were used for CTC identification. The Ariol(R) system (Genetix USA Inc, San Jose, CA, USA) was used for automated cell image capture and analysis of CTCs on glass slides. RESULTS: Our method has the capability to enrich three types of CTCs including CK+&EpCAM+, CK+&EpCAM-/low, and CK-/low&EpCAM+ cells. In the blind method comparison, our anti-CK antibody enrichment method showed a significantly higher CTC positive rate (49% vs. 29%) and a larger dynamic CTC detected range (1 to 571 vs. 1 to 270) than that of the CellSearchtrade mark system in the total of 49 breast cancer patients. Our method detected 15 to 111% more CTCs than the CellSearchtrade mark method in patients with higher CTC counts (>20 CTCs per 7.5 ml of blood). The three fluorescent and brightfield images from the Ariol(R) system reduced the number of false-positive CTC events according to the established CTC criteria. CONCLUSION: Our data indicate that the tumor-specific intracellular CK marker could be used for efficient CTC enrichment. Enrichment with anti-CK alone or combined with anti-EpCAM antibodies significantly enhances assay sensitivity. The three fluorescent and brightfield superior images with the Ariol(R) system reduced false-positive CTC events.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Cell Adhesion Molecules/metabolism , Keratins/metabolism , Neoplastic Cells, Circulating/metabolism , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Epithelial Cell Adhesion Molecule , False Positive Reactions , Female , Humans , Image Processing, Computer-Assisted , Keratins/biosynthesis , Medical Oncology/methods , Neoplasm Metastasis , Reproducibility of Results
8.
Am J Physiol Cell Physiol ; 288(5): C1179-89, 2005 May.
Article in English | MEDLINE | ID: mdl-15613496

ABSTRACT

Gene expression profiling using microarrays requires microgram amounts of RNA, which limits its direct application for the study of nanogram RNA samples obtained using microdissection, laser capture microscopy, or needle biopsy. A novel system based on Ribo-SPIA technology (RS, Ovation-Biotin amplification and labeling system) was recently introduced. The utility of the RS system, an optimized prototype system for picogram RNA samples (pRS), and two T7-based systems involving one or two rounds of amplification (One RA, Standard Protocol, or Two RA, Small Sample Prototcol, version II) were evaluated in the present study. Mouse kidney (MK) and mouse universal reference (MUR) RNA samples, 0.3 ng to 10 mug, were analyzed using high-density Affymetrix Mouse Genome 430 2.0 GeneChip arrays. Call concordance between replicates, correlations of signal intensity, signal intensity ratios, and minimal fold increase necessary for significance were determined. All systems amplified partially overlapping sets of genes with similar signal intensity correlations. pRS amplified the highest number of genes from 10-ng RNA samples. We detected 24 of 26 genes verified by RT-PCR in samples prepared using pRS. Two RA yielded somewhat higher call concordances than did RS and pRS (91.8% vs. 89.3% and 88.1%, respectively). Although all target preparation methods were suitable, pRS amplified the highest number of targets and was found to be suitable for amplification of as little as 0.3 ng of total RNA. In addition, RS and pRS were faster and simpler to use than the T7-based methods and resulted in the generation of cDNA, which is more stable than cRNA.


Subject(s)
Gene Expression Profiling/methods , Nucleic Acid Amplification Techniques/methods , RNA/chemistry , Animals , Mice , Microarray Analysis/methods , Reproducibility of Results , Sensitivity and Specificity
9.
Biotechniques ; 37(5): 854-7, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15560142

ABSTRACT

Gene expression analysis has become an invaluable tool for understanding gene function and regulation. However, global expression analysis requires large RNA quantities or RNA preamplification. We describe an isothermal messenger RNA (mRNA) amplification method, Ribo-SPIA, which generates micrograms of labeled cDNA from 5 ng of total RNA in 1 day for analysis on arrays or by PCR quantification. Highly reproducible GeneChip array performance (R2 > 0.95) was achieved with independent reactions starting with 5-100 ng Universal Human Reference total RNA. Targets prepared by the Ribo-SPIA procedure (20 ng total RNA input) or the Affymetrix Standard Protocol (10 microg total RNA) perform similarly, as indicated by gene call concordance (86%) and good correlation of differential gene expression determination (R2 = 0.82). Accuracy of transcript representation in cDNA generated by the Ribo-SPIA procedure was also demonstrated by PCR quantification of 33 transcripts, comparing differential expression in amplified and nonamplified cDNA (R2 = 0.97 over a range of nearly 10(6) infold change). Thus Ribo-SPIA amplification of mRNA is rapid, robust, highly accurate and reproducible, and sensitive enough to allow quantification of very low abundance transcripts.


Subject(s)
Gene Expression Profiling/methods , Microchemistry/methods , Nucleic Acid Amplification Techniques/methods , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/analysis , RNA, Messenger/genetics , Reproducibility of Results , Sensitivity and Specificity
10.
Comp Biochem Physiol B Biochem Mol Biol ; 138(3): 305-11, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15253879

ABSTRACT

Vitellin was purified from ovaries of mature female Chinese mitten-handed crab (Eriocheir sinensis) using gel filtration chromatography. Analysis by native PAGE showed the vitellin had a native molecular mass of 520 kDa, while denaturing SDS-PAGE revealed two subunits of 97 and 74 kDa. Purified vitellin was used to raise polyclonal antisera, with which an enzyme-linked immunosorbent assay (ELISA) was developed. The ELISA was sensitive and could effectively detect vitellin in the range of 7.8-500 ng. Furthermore, vitellin levels in various developmental stages of oogenesis were measured with the ELISA assay. The results indicated that levels of vitellin increased significantly from 0.22 mg/ovary at Stage II to 360.31 mg/ovary at Stage IV.


Subject(s)
Brachyura/metabolism , Ovary/metabolism , Vitellins/isolation & purification , Vitellins/metabolism , Animals , China , Enzyme-Linked Immunosorbent Assay , Female , Male , Rabbits , Vitellins/immunology
11.
Article in English | MEDLINE | ID: mdl-11867293

ABSTRACT

The effect of feeding three semi-purified diets containing different lipid sources (anchovy oil, soybean oil and pork lard) on fecundity, hatchability and egg fatty acid composition of Chinese mitten-handed crab (Eriocheir sinensis) broodstock was compared with a fresh clam diet in a 6-month feeding trial. Broodstock crabs fed the diet containing pork lard showed poor fecundity and low hatchability. Crabs fed the diet containing soybean oil showed improved fecundity; however, no significant improvement in hatchability was observed. Broodstock fed the diet containing anchovy oil showed the highest fecundity and egg hatchability. Eggs from broodstock fed anchovy oil as sole dietary lipid had a higher n-3 polyunsaturated fatty acid (PUFA) content (33.3%) compared with those of crabs fed diets with soybean oil (20.1%) and pork lard (16.3%) as lipid sources. The results indicate a close correlation between: (1) the 20:5n-3 content of the egg lipid and fecundity; (2) the 22:6n-3 content and hatchability; and (3) fecundity, hatchability and n-3/n-6 fatty acid ratio. The results also suggest that each of these n-3 HUFAs may play different and specific roles in crab reproduction and that either must be adequate in the broodstock diet.


Subject(s)
Animal Nutritional Physiological Phenomena , Brachyura/growth & development , Dietary Fats/pharmacology , Reproduction/drug effects , Animal Feed , Animals , Fatty Acids, Unsaturated/pharmacology , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...