Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Opt Express ; 32(10): 18161-18174, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858979

ABSTRACT

As an alternative solution to surpass electronic neural networks, optical neural networks (ONNs) offer significant advantages in terms of energy consumption and computing speed. Despite the optical hardware platform could provide an efficient approach to realizing neural network algorithms than traditional hardware, the lack of optical nonlinearity limits the development of ONNs. Here, we proposed and experimentally demonstrated an all-optical nonlinear activator based on the stimulated Brillouin scattering (SBS). Utilizing the exceptional carrier dynamics of SBS, our activator supports two types of nonlinear functions, saturable absorption and rectified linear unit (Relu) models. Moreover, the proposed activator exhibits large dynamic response bandwidth (∼11.24 GHz), low nonlinear threshold (∼2.29 mW), high stability, and wavelength division multiplexing identities. These features have potential advantages for the physical realization of optical nonlinearities. As a proof of concept, we verify the performance of the proposed activator as an ONN nonlinear mapping unit via numerical simulations. Simulation shows that our approach achieves comparable performance to the activation functions commonly used in computers. The proposed approach provides support for the realization of all-optical neural networks.

2.
Micromachines (Basel) ; 15(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38675296

ABSTRACT

The first quantum revolution has brought us the classical Internet and information technology. Today, as technology advances rapidly, the second quantum revolution quietly arrives, with a crucial moment for quantum technology to establish large-scale quantum networks. However, solid-state quantum bits (such as superconducting and semiconductor qubits) typically operate in the microwave frequency range, making it challenging to transmit signals over long distances. Therefore, there is an urgent need to develop quantum transducer chips capable of converting microwaves into optical photons in the communication band, since the thermal noise of optical photons at room temperature is negligible, rendering them an ideal information carrier for large-scale spatial communication. Such devices are important for connecting different physical platforms and efficiently transmitting quantum information. This paper focuses on the fast-developing field of optomechanical quantum transducers, which has flourished over the past decade, yielding numerous advanced achievements. We categorize transducers based on various mechanical resonators and discuss their principles of operation and their achievements. Based on existing research on optomechanical transducers, we compare the parameters of several mechanical resonators and analyze their advantages and limitations, as well as provide prospects for the future development of quantum transducers.

3.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613308

ABSTRACT

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

4.
Opt Lett ; 48(15): 3965-3968, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37527094

ABSTRACT

All-optical phase regeneration aims at restoring the phase information of coherently encoded data signals directly in the optical domain so as to compensate for phase distortions caused by transceiver imperfections and nonlinear impairments along the transmission link. Although it was proposed two decades ago, all-optical phase regeneration has not been seen in realistic networks to date, mainly because this technique entails complex bulk modules and relies on high-precision phase sensitive nonlinear dynamics, both of which are adverse to field deployment. Here, we demonstrate a new, to the best of our knowledge, architecture to implement all-optical phase regeneration using integrated photonic devices. In particular, we realize quadrature phase quantization by exploring the phase-sensitive parametric wave mixing within on-chip silicon waveguides, while multiple coherent pump laser tones are provided by a chip-scale micro-cavity Kerr frequency comb. Multi-channel all-optical phase regeneration is experimentally demonstrated for 40 Gbps QPSK data, achieving the best SNR improvement of more than 6 dB. Our study showcases a promising avenue to enable the practical implementation of all-optical phase regeneration in realistic long-distance fiber transmission networks.

5.
Sci Adv ; 9(28): eadf4587, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37450592

ABSTRACT

Telecom-band-integrated quantum memory is an elementary building block for developing quantum networks compatible with fiber communication infrastructures. Toward such a network with large capacity, an integrated multimode photonic quantum memory at telecom band has yet been demonstrated. Here, we report a fiber-integrated multimode quantum storage of single photon at telecom band on a laser-written chip. The storage device is a fiber-pigtailed Er3+:LiNbO3 waveguide and allows a storage of up to 330 temporal modes of heralded single photon with 4-GHz-wide bandwidth at 1532 nm and a 167-fold increasing of coincidence detection rate with respect to single mode. Our memory system with all-fiber addressing is performed using telecom-band fiber-integrated and on-chip components. The results represent an important step for the future quantum networks using integrated photonics devices.


Subject(s)
Optics and Photonics , Photons , Communication
6.
Opt Lett ; 48(11): 2917-2920, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262243

ABSTRACT

Discrete frequency-bin entanglement is an essential resource for applications in quantum information processing. In this Letter, we propose and demonstrate a scheme to generate discrete frequency-bin entanglement with a single piece of periodically poled lithium niobate waveguide in a modified Sagnac interferometer. Correlated two-photon states in both directions of the Sagnac interferometer are generated through cascaded second-order optical nonlinear processes. A relative phase difference between the two states is introduced by changing the polarization state of pump light, thus manipulating the two-photon state at the output of the Sagnac interferometer. The generated two-photon state is sent into a fiber polarization splitter, and then a pure discrete frequency-bin entangled two-photon state is obtained by setting the pump light. The frequency entanglement property is measured by a spatial quantum beating with a visibility of 96.0±6.1%. The density matrix is further obtained with a fidelity of 98.0±3.0% to the ideal state. Our demonstration provides a promising method for the generation of pure discrete frequency-bin entanglement at the telecom band, which is desired in quantum photonics.

7.
Light Sci Appl ; 12(1): 115, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37164962

ABSTRACT

Quantum teleportation can transfer an unknown quantum state between distant quantum nodes, which holds great promise in enabling large-scale quantum networks. To advance the full potential of quantum teleportation, quantum states must be faithfully transferred at a high rate over long distance. Despite recent impressive advances, a high-rate quantum teleportation system across metropolitan fiber networks is extremely desired. Here, we demonstrate a quantum teleportation system which transfers quantum states carried by independent photons at a rate of 7.1 ± 0.4 Hz over 64-km-long fiber channel. An average single-photon fidelity of ≥90.6 ± 2.6% is achieved, which exceeds the maximum fidelity of 2/3 in classical regime. Our result marks an important milestone towards quantum networks and opens the door to exploring quantum entanglement based informatic applications for the future quantum internet.

8.
Opt Lett ; 48(10): 2571-2574, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37186711

ABSTRACT

Two-dimensional (2D) antiferromagnetic semiconductor chromium thiophosphate (CrPS4) has gradually become a major candidate material for low-dimensional nanoelectromechanical devices due to its remarkable structural, photoelectric characteristics and potentially magnetic properties. Here, we report the experimental study of a new few-layer CrPS4 nanomechanical resonator demonstrating excellent vibration characteristics through the laser interferometry system, including the uniqueness of resonant mode, the ability to work at the very high frequency, and gate tuning. In addition, we demonstrate that the magnetic phase transition of CrPS4 strips can be effectively detected by temperature-regulated resonant frequencies, which proves the coupling between magnetic phase and mechanical vibration. We believe that our findings will promote the further research and applications of the resonator for 2D magnetic materials in the field of optical/mechanical signal sensing and precision measurement.

9.
Opt Express ; 31(8): 12433-12448, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157403

ABSTRACT

Cavity optomechanics with picometer displacement measurement resolution has shown vital applications in high-precision sensing areas. In this paper, an optomechanical micro hemispherical shell resonator gyroscope (MHSRG) is proposed, for the first time. The MHSRG is driven by the strong opto-mechanical coupling effect based on the established whispering gallery mode (WGM). And the angular rate is characterized by measuring the transmission amplitude changing of laser coupled in and out from the optomechanical MHSRG based on the dispersive resonance wavelength shift and/or dissipative losses varying. The detailed operating principle of high-precision angular rate detection is theoretically explored and the fully characteristic parameters are numerically investigated. Simulation results show that the optomechanical MHSRG can achieve scale factor of 414.8 mV/ (°/ s) and angular random walk of 0.0555 °/ h1/2 when the input laser power is 3 mW and resonator mass is just 98 ng. Such proposed optomechanical MHSRG can be widely used for chip-scale inertial navigation, attitude measurement, and stabilization.

10.
Opt Lett ; 48(1): 81-84, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36563374

ABSTRACT

Bolometers based on graphene have demonstrated outstanding performance with high sensitivity and short response time. In situ adjustment of bolometers is very important in various applications, but it is still difficult to implement in many systems. Here we propose a gate-tunable bolometer based on two strongly coupled graphene nanomechanical resonators. Both resonators are exposed to the same light field, and we can measure the properties of one bolometer by directly tracking the resonance frequency shifts, and indirectly measure the other bolometer through mechanical coupling. We find that the sensitivity and the response bandwidth of both bolometers can be independently adjusted by tuning the corresponding gate voltages. Moreover, the properties of the indirectly measured bolometer show a dependence on the coupling between the two resonators, with other parameters being fixed. Our method has the potential to optimize the design of large-scale bolometer arrays, and open new horizons in infrared/terahertz astronomy and communication systems.

11.
Opt Lett ; 47(18): 4838-4841, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36107103

ABSTRACT

Dissipative Kerr soliton microcombs are believed to be a promising technique to build a dual-comb source for applications including precision laser metrology, fast laser spectroscopy, and high-speed optical signal processing. In this Letter, we conduct a detailed experimental investigation on the phase coherence between two on-chip Kerr soliton microcombs, where the underlying physical and technical origins that lead to the mutual phase noise between microcombs are analyzed. Moreover, the techniques of 2-point locking and optical frequency division are explored to enhance the dual-microcomb phase coherence, and we demonstrate the best phase noise down to -50 dBc/Hz at 1-Hz offset, -90 dBc/Hz at 1-kHz offset, and -120 dBc/Hz at 1-MHz offset. Our study provides a basic reference for both fundamental studies and practical applications of Kerr soliton dual microcombs that entail high mutual phase coherence.

12.
J Phys Condens Matter ; 34(37)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35779515

ABSTRACT

As an inherent property of the device itself, nonlinearity in micro-/nano- electromechanical resonators is difficult to eliminate, and it has shown a wide range of applications in basic research, sensing and other fields. While many application scenarios require tunability of the nonlinearity, inherent nonlinearity of a mechanical resonator is difficult to be changed. Here, we report the experimental observation of a Joule heating induced tuning effect on the nonlinearity of graphene mechanical resonators. We fabricated multiple graphene mechanical resonators and detected their resonant properties by an optical interference method. The mechanical vibration of the resonators will enter from the linear to the nonlinear intervals if we enhance the external driving power to a certain value. We found that at a fixed drive power, the nonlinearity of a mechanical resonator can be tuned by applying a dc bias current on the resonator itself. The tuning mechanism could be explained by the nonlinear amplitude-frequency dependence theory. Our results may provide a research platform for the study of mechanical nonlinearity by using atomic-thin layer materials.

13.
Front Neurosci ; 16: 844027, 2022.
Article in English | MEDLINE | ID: mdl-35386593

ABSTRACT

With the rapid development of the take-out industry, taste and hygiene ratings as social-based information have been frequently used by online food-ordering platforms to facilitate consumer purchases. The present study aims to uncover the effects of taste and hygiene ratings on online food-ordering decision by incorporating behavioral and neural approaches. The behavioral results showed that a high taste rating induced a higher ordering intention than a low taste rating, and that a high hygiene rating induced a higher ordering intention than a low hygiene rating. The effect of hygiene rating on ordering intention was moderated by taste rating. Hygiene rating had a greater impact on ordering intention when the taste rating was high (vs. low). In addition, inconsistency between taste and hygiene ratings increased the cognitive load and took more time for decision-making. The event-related potential (ERP) data revealed that consumers paid more attention to a high (vs. low) taste rating in the early cognitive process, which was reflected by a larger P2. Subsequently, a more negative N2 was elicited by conflicting ratings than consistent ratings when the taste rating was low. In the relatively late decision-making process, a larger P3 was evoked by consistent than conflicting ratings, suggesting that consumers had more confidence in their decisions for consistent ratings. These findings could help restaurants understand the roles of taste and hygiene rating cues in affecting consumer behavior and prompt those restaurants to adopt effective measures to increase online sales.

14.
Nat Commun ; 13(1): 1070, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35228546

ABSTRACT

Dissipative Kerr soliton microcombs have been recognized as a promising multi-wavelength laser source for fiber optical communications, as their comb lines possess frequency and phase stability far beyond the independent lasers. Especially, for coherent optical communications, a highly beneficial but rarely explored target is to re-generate a Kerr soliton microcomb as the receiver local oscillators that conserve the frequency and phase property of the incoming data carriers, so that to enable coherent detection with minimized optical and electrical compensations. Here, via pump laser conveying and two-point locking, we implement re-generation of a Kerr soliton microcomb that faithfully clones the frequency and phase of another microcomb sent from 50 km away. Moreover, by using the coherence-cloned soliton microcombs as carriers and local oscillators, we demonstrate terabit coherent data interconnect, wherein traditional digital processes for frequency offset estimation are totally dispensed with, and carrier phase estimation is substantially simplified via slowed-down estimation rate per channel and joint estimation among multiple channels. Our work reveals that, in addition to providing a multitude of laser tones, regulating the frequency and phase of Kerr soliton microcombs among transmitters and receivers can significantly improve optical coherent communication in terms of performance, power consumption, and simplicity.

15.
Opt Lett ; 47(23): 6129-6132, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37219189

ABSTRACT

In this Letter, we report an investigation of the feasibility and performance of wavelength-division multiplexed (WDM) optical communications using an integrated perfect soliton crystal as the multi-channel laser source. First, we confirm that perfect soliton crystals pumped directly by a distributed-feedback (DFB) laser self-injection locked to the host microcavity has sufficiently low frequency and amplitude noise to encode advanced data formats. Second, perfect soliton crystals are exploited to boost the power level of each microcomb line, so that it can be directly used for data modulation, excluding preamplification. Third, in a proof-of-concept experiment, we demonstrate seven-channel 16-quadrature amplitude modulation (16-QAM) and 4-level pulse amplitude modulation (PAM4) data transmissions using an integrated perfect soliton crystal as the laser carrier; excellent data receiving performance is obtained for various fiber link distances and amplifier configurations. Our study reveals that fully integrated Kerr soliton microcombs are viable and advantageous for optical data communications.

16.
Environ Sci Pollut Res Int ; 29(5): 6449-6462, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34453250

ABSTRACT

The resource, environment, and ecological value of drinking reservoirs have received widespread concerns due to the pollution of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). Therefore, we comprehensively studied the occurrence, source, distribution, and risk assessment of representative PAHs in Fengshuba Reservoir (FSBR) (large drinking reservoir, China). The total concentrations of 16 USEPA PAHs in the water phase, porewater phase, sediment phase, and soil phase were in ranges of 109.72-393.19 ng/L, 5.75-35.15 µg/L, 364.4-743.71 µg/kg, and 367.81-639.89 µg/kg, respectively. The naphthalene (Nap) was the dominant PAHs in the water phase, while it was Nap and phenanthrene (Phe) in porewater, sediment, and soil phase. The main sources of PAHs in FSBR were biomass combustion. Redundancy analysis indicated that the NTU, NO2-, NH4+, Chl-α, and IC were the dominant factors influencing the PAH distribution in water phase, and the PAHs in sediment phase was affected by T and NO3-. Pseudo-partitioning coefficients indicated that the PAHs in the porewater phase were more likely to migrate to the sediment phase. Risk assessment indicated that the PAHs both in the water and sediment phases were generally in a low-risk state, while the PAHs in the soil phase were in a moderate-risk state, and the Nap was in a high-risk state, and exposure to the PAHs in FSBR through drinking and skin exposure had little impact on consumers' health. In summary, Nap could be used as a key indicator to evaluate the existence and potential risk of PAHs in FSBR.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
17.
BMC Fam Pract ; 22(1): 191, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34560844

ABSTRACT

BACKGROUND: Chinese residents' practical work experiences are different from those described in Western studies. To explore potential mechanisms underlying the effects of doctor-patient relationships on medical residents' work engagement, verifying a posited mediating effect of role overload, and moderating effect of conflict avoidance, in the Chinese context. METHODS: Based on the conservation of resources theory, a composite model was constructed. This study's data were collected from four different Chinese tertiary hospitals; 195 residents undergoing regularization training took this survey. Hierarchical moderated and mediated regression analyses were utilized. RESULTS: Doctor-patient relationship were found to be positively related to residents' work engagement (ß=0.31, p≤0.001). Role overload partially mediated the effect of these relationships on work engagement, and the moderating role of conflict avoidance in the relationship between doctor-patient relationship and conflict avoidance was negative. CONCLUSION: Maintaining good doctor-patient relationship can prompt residents to increase their engagement in work in order to meet their patients' needs. Furthermore, role overload has a particular influence in early career stages. Not only is it necessary for residents to gain a sense of recognition and support while they carry out their job responsibilities, especially while dealing with complex doctor-patient relationship, but it is also important to create work environments that can help residents shape their professional competency.


Subject(s)
Internship and Residency , Work Engagement , Humans , Physician-Patient Relations , Surveys and Questionnaires , Workplace
18.
Opt Express ; 29(11): 16241-16248, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154191

ABSTRACT

Graphene has been considered as one of the best materials to implement mechanical resonators due to their excellent properties such as low mass, high quality factors and tunable resonant frequencies. Here we report the observation of phonon lasing induced by the photonthermal pressure in a few-layer graphene resonator at room temperature, where the graphene resonator and the silicon substrate form an optical cavity. A marked threshold in the oscillation amplitude and a narrowing linewidth of the vibration mode are observed, which confirms a phonon lasing process in the graphene resonator. Our findings will stimulate the studies on phononic phenomena, help to establish new functional devices based on graphene mechanical resonators, and might find potential applications in classical and quantum sensing fields, as well as in information processing.

19.
Opt Express ; 29(1): 256-271, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33362119

ABSTRACT

We theoretically investigate the preparation of mid-infrared (MIR) spectrally-uncorrelated biphotons from a spontaneous parametric down-conversion process using doped LN crystals, including MgO doped LN, ZnO doped LN, and In2O3 doped ZnLN with doping ratio from 0 to 7 mol%. The tilt angle of the phase-matching function and the corresponding poling period are calculated under type-II, type-I, and type-0 phase-matching conditions. We also calculate the thermal properties of the doped LN crystals and their performance in Hong-Ou-Mandel interference. It is found that the doping ratio has a substantial impact on the group-velocity-matching (GVM) wavelengths. Especially, the GVM2 wavelength of co-doped InZnLN crystal has a tunable range of 678.7 nm, which is much broader than the tunable range of less than 100 nm achieved by the conventional method of adjusting the temperature. It can be concluded that the doping ratio can be utilized as a degree of freedom to manipulate the biphoton state. The spectrally uncorrelated biphotons can be used to prepare pure single-photon source and entangled photon source, which may have promising applications for quantum-enhanced sensing, imaging, and communications at the MIR range.

20.
Opt Lett ; 45(18): 5073-5076, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932456

ABSTRACT

A temporal dissipative Kerr soliton (DKS) frequency comb can be generated in an optical micro-cavity relying on the rigid balance between cavity decay (dispersion) and parametric gain (nonlinear phase modulation) induced by an intense pump laser. In practice, to maintain such delicate double balances experienced by the intracavity soliton pulses, it requires precise control of the pump laser frequency and power, as well as the micro-cavity parameters. However, to date there still lacks experimental demonstration that simultaneously stabilizes all these key parameters to enhance the long-term DKS stability. Here, we demonstrate continuous working of a on-chip DKS microcomb for a record-breaking 14 days without showing any sign of breakdown. Such improved microcomb stability is enabled mainly by robust pump power coupling to the micro-cavity utilizing packaged planar-lightwave-circuit mode converters, and faithful locking of the pump frequency detuning via an auxiliary laser heating method. In addition to superior stability, the demonstrated DKS microcomb system also achieves favorable compactness, with all the accessory modules being assembled into a standard 4U case. We hope that our demonstration could prompt the practical utilization of Kerr microcombs in real-world applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...