Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Funct ; 12(24): 12671-12682, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34825691

ABSTRACT

Objective: This study aimed to elucidate the pharmacological effects of sesamin (Ses) and its mechanism of action towards PM2.5-induced cardiovascular injuries. Method: Forty Sprague Dawley (SD) rats were randomly divided into five groups: a saline control group; a PM2.5 exposure group; and low-, middle-, and high-dose Ses pretreatment groups. The SD rats were pretreated with different concentrations of Ses for 21 days. Afterward, the rats were exposed to ambient PM2.5 by intratracheal instillation every other day for a total of three times. The levels of inflammatory markers, including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß), and interleukin-6 (IL-6), and indicators related to oxidative responses, such as total superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), were measured in the blood and heart. The expression of ferroptosis-related proteins in heart tissues was determined via western blot and immunohistochemistry. Results: Ses pretreatment substantially ameliorated cardiovascular injuries in rats as evidenced by the decrease in the pathological score and collagen area. The decreased levels of SOD, GSH, and GSH-Px in the heart and serum were inhibited by Ses. In addition, Ses not only notably increased the activity of antioxidant enzymes but also reduced the levels of MDA, CK, LDH, CK-MB, IL-6, TNF-α, IL-1ß, and IL-6. Furthermore, Ses pretreatment upregulated the expression levels of GPX4, SLC7A11, TFRC, and FPN1 and inhibited the expression levels of FTH1 and FTL. Conclusion: Ses pretreatment could ameliorate PM2.5-induced cardiovascular injuries perhaps by inhibiting ferroptosis. Therefore, Ses pretreatment may be a novel strategy for the prevention and treatment of PM2.5-induced cardiovascular injury.


Subject(s)
Antioxidants/pharmacology , Cardiovascular Diseases/prevention & control , Dioxoles/pharmacology , Ferroptosis/drug effects , Lignans/pharmacology , Particulate Matter/adverse effects , Animals , Disease Models, Animal , Rats , Rats, Sprague-Dawley
2.
Food Chem ; 294: 572-577, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31126502

ABSTRACT

Sea buckthorn (Hippophae rhamnoides L.) pulp oils (SPOs) are rich in a variety of beneficial bioactive ingredients. Nevertheless, SPOs would be exposed to plastic equipment during processing, resulted in increasing phthalates contents and edible risk, as well as affecting oil quality. For these reasons, the effects of two stages steam distillation (SD2) and two stages molecular distillation (MD2) on phthalic acid esters (PAEs) content were investigated and compared in the present work. Compared with SD2, MD2 showed higher removal rates of seven selected PAEs from the SPO. Even if the initial concentration of DBP and DEHP in R-SPO were 1.626 and 10.933 mg/kg respectively, the concentration of DBP and DINP could be reduced below the limit set by China government after treated with MD2. Besides that, there was no trans-fatty acids generated in SPO during the distillation process.


Subject(s)
Esters/chemistry , Hippophae/chemistry , Phthalic Acids/chemistry , Plant Oils/chemistry , China , Chromatography, Gas , Distillation , Esters/isolation & purification , Fatty Acids/analysis , Hippophae/metabolism , Limit of Detection , Phthalic Acids/analysis , Phthalic Acids/isolation & purification , Steam
SELECTION OF CITATIONS
SEARCH DETAIL