Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Inflamm Res ; 73(6): 929-943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642079

ABSTRACT

OBJECTIVES: Intimal hyperplasia is a serious clinical problem associated with the failure of therapeutic methods in multiple atherosclerosis-related coronary heart diseases, which are initiated and aggravated by the polarization of infiltrating macrophages. The present study aimed to determine the effect and underlying mechanism by which tumor necrosis factor receptor-associated factor 5 (TRAF5) regulates macrophage polarization during intimal hyperplasia. METHODS: TRAF5 expression was detected in mouse carotid arteries subjected to wire injury. Bone marrow-derived macrophages, mouse peritoneal macrophages and human myeloid leukemia mononuclear cells were also used to test the expression of TRAF5 in vitro. Bone marrow-derived macrophages upon to LPS or IL-4 stimulation were performed to examine the effect of TRAF5 on macrophage polarization. TRAF5-knockout mice were used to evaluate the effect of TRAF5 on intimal hyperplasia. RESULTS: TRAF5 expression gradually decreased during neointima formation in carotid arteries in a time-dependent manner. In addition, the results showed that TRAF5 expression was reduced in classically polarized macrophages (M1) subjected to LPS stimulation but was increased in alternatively polarized macrophages (M2) in response to IL-4 administration, and these changes were demonstrated in three different types of macrophages. An in vitro loss-of-function study with TRAF5 knockdown plasmids or TRAF5-knockout mice revealed high expression of markers associated with M1 macrophages and reduced expression of genes related to M2 macrophages. Subsequently, we incubated vascular smooth muscle cells with conditioned medium of polarized macrophages in which TRAF5 expression had been downregulated or ablated, which promoted the proliferation, migration and dedifferentiation of VSMCs. Mechanistically, TRAF5 knockdown inhibited the activation of anti-inflammatory M2 macrophages by directly inhibiting PPARγ expression. More importantly, TRAF5-deficient mice showed significantly aggressive intimal hyperplasia. CONCLUSIONS: Collectively, this evidence reveals an important role of TRAF5 in the development of intimal hyperplasia through the regulation of macrophage polarization, which provides a promising target for arterial restenosis-related disease management.


Subject(s)
Hyperplasia , Macrophages , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma , TNF Receptor-Associated Factor 5 , Animals , Macrophages/metabolism , TNF Receptor-Associated Factor 5/genetics , TNF Receptor-Associated Factor 5/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Male , Mice , Humans , Carotid Arteries/pathology , Neointima/pathology , Neointima/metabolism , Interleukin-4/genetics , Cells, Cultured , Tunica Intima/pathology , Lipopolysaccharides/pharmacology
2.
J Oral Rehabil ; 51(7): 1123-1134, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38491740

ABSTRACT

OBJECTIVE: Previous studies focused on the benefits of adequate prosthodontic treatment, while few studies have investigated the prosthodontic-related risks to health. As a modifiable oral health indicator, the association of ill-fitting prosthesis (IFP) with hypertension has not been fully explored. METHODS: This cross-sectional study involved 158,659 adults in Beijing (2009-2017) receiving intra-oral examinations and blood pressure measurements. Logistic regression models were applied to assess the association of IFP with the prevalence of hypertension, systolic blood pressure (SBP) ≧ 140 mmHg and diastolic blood pressure (DBP) ≧ 90 mmHg, as well as subgroup analyses by different fixed IFP subgroups (according to involved teeth number) and removable IFP subgroup. We further investigated effect modifications among stratified populations. RESULTS: 158,659 individuals were included for analysis, 346 (26.86%) in IFP group and 27,380 (17.40%) in non-IFP group (p < 0.001) were hypertensive. After adjustment of sex, age, obesity, dyslipidaemia, diabetes, hsCRP, family history of CVD, self-reported smoking, self-reported drinking and WC, ORs of hypertension, SBP ≧ 140 mmHg and DBP ≧ 90 mmHg were 1.330 (95% CI: 1.162-1.522), 1.277 (95% CI: 1.098-1.486) and 1.376 (95% CI: 1.186-1.596), respectively (p < 0.05). Furthermore, after full adjustment, the number of involved teeth showed a significant incremental trend with hypertension risk in the population with and without IFP (p for trend <0.001). The IFP-blood pressure associations were more pronounced in females, 18-60 years, non-obese and diabetic participants. CONCLUSION: As a modifiable oral indicator, IFP was significantly associated with a higher risk of hypertension.


Subject(s)
Hypertension , Humans , Hypertension/epidemiology , Female , Cross-Sectional Studies , Male , Middle Aged , Adult , Risk Factors , Prevalence , Aged , Prosthesis Fitting , Blood Pressure/physiology , Beijing/epidemiology , Dental Prosthesis/adverse effects
3.
Metabolism ; 155: 155832, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438106

ABSTRACT

Interleukin (IL)-6 has anti- and pro-inflammatory functions, controlled by IL-6 classic and trans-signaling, respectively. Differences in the downstream signaling mechanism between IL-6 classic and trans-signaling have not been identified. Here, we report that IL-6 activates glycolysis to regulate the inflammatory response. IL-6 regulates glucose metabolism by forming a complex containing signal-transducing activators of transcription 3 (STAT3), hexokinase 2 (HK2), and voltage-dependent anion channel 1 (VDAC1). The IL-6 classic signaling directs glucose flux to oxidative phosphorylation (OxPhos), while IL-6 trans-signaling directs glucose flux to anaerobic glycolysis. Classic IL-6 signaling promotes STAT3 translocation into mitochondria to interact with pyruvate dehydrogenase kinase-1 (PDK1), leading to pyruvate dehydrogenase α (PDHA) dissociation from PDK1. As a result, PDHA is dephosphorylated, and STAT3 is phosphorylated at Ser727. By contrast, IL-6 trans-signaling promotes the interaction of sirtuin 2 (SIRT2) and lactate dehydrogenase A (LDHA), leading to the dissociation of STAT3 from SIRT2. As a result, LDHA is deacetylated, and STAT3 is acetylated and phosphorylated at Tyr705. IL-6 classic signaling promotes the differentiation of regulatory T cells via the PDK1/STAT3/PDHA axis, whereas IL-6 trans-signaling promotes the differentiation of Th17 cells via the SIRT2/STAT3/LDHA axis. Conclusion: IL-6 classic signaling generates anti-inflammatory functions by shifting energy metabolism to OxPhos, while IL-6 trans-signaling generates pro-inflammatory functions by shifting energy metabolism to anaerobic glycolysis.


Subject(s)
Glucose , Interleukin-6 , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , STAT3 Transcription Factor , Signal Transduction , Interleukin-6/metabolism , Glucose/metabolism , Animals , Signal Transduction/physiology , STAT3 Transcription Factor/metabolism , Mice , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Glycolysis/physiology , Humans , Inflammation/metabolism , Oxidative Phosphorylation , Hexokinase/metabolism , Phosphorylation , Mice, Inbred C57BL , Metabolic Reprogramming
4.
Sci Rep ; 14(1): 3269, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332169

ABSTRACT

Continuous monitoring of cardiac motions has been expected to provide essential cardiac physiology information on cardiovascular functioning. A fiber-optic micro-vibration sensing system (FO-MVSS) makes it promising. This study aimed to explore the correlation between Ballistocardiography (BCG) waveforms, measured using an FO-MVSS, and myocardial valve activity during the systolic and diastolic phases of the cardiac cycle in participants with normal cardiac function and patients with congestive heart failure (CHF). A high-sensitivity FO-MVSS acquired continuous BCG recordings. The simultaneous recordings of BCG and electrocardiogram (ECG) signals were obtained from 101 participants to examine their correlation. BCG, ECG, and intracavitary pressure signals were collected from 6 patients undergoing cardiac catheter intervention to investigate BCG waveforms and cardiac cycle phases. Tissue Doppler imaging (TDI) measured cardiac time intervals in 51 participants correlated with BCG intervals. The BCG recordings were further validated in 61 CHF patients to assess cardiac parameters by BCG. For heart failure evaluation machine learning was used to analyze BCG-derived cardiac parameters. Significant correlations were observed between cardiac physiology parameters and BCG's parameters. Furthermore, a linear relationship was found betwen IJ amplitude and cardiac output (r = 0.923, R2 = 0.926, p < 0.001). Machine learning techniques, including K-Nearest Neighbors (KNN), Decision Tree Classifier (DTC), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and XGBoost, respectively, demonstrated remarkable performance. They all achieved average accuracy and AUC values exceeding 95% in a five-fold cross-validation approach. We establish an electromagnetic-interference-free and non-contact method for continuous monitoring of the cardiac cycle and myocardial contractility and measure the different phases of the cardiac cycle. It presents a sensitive method for evaluating changes in both cardiac contraction and relaxation in the context of heart failure assessment.


Subject(s)
Ballistocardiography , Heart Failure , Humans , Ballistocardiography/methods , Heart Failure/diagnostic imaging , Heart , Electrocardiography/methods , Myocardial Contraction/physiology
5.
Am J Hypertens ; 37(3): 230-238, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37864839

ABSTRACT

BACKGROUND: Increased reactive oxygen species (ROS) and oxidative stress response lead to cardiomyocyte hypertrophy and apoptosis, which play crucial roles in the pathogenesis of heart failure. The purpose of current research was to explore the role of antioxidant N-acetylcysteine (NAC) on cardiomyocyte dysfunction and the underlying molecular mechanisms. METHODS AND RESULTS: Compared with control group without NAC treatment, NAC dramatically inhibited the cell size of primary cultured neonatal rat cardiomyocytes (NRCMs) tested by immunofluorescence staining and reduced the expression of representative markers associated with hypertrophic, fibrosis and apoptosis subjected to phenylephrine administration examined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Moreover, enhanced ROS expression was attenuated, whereas activities of makers related to oxidative stress response examined by individual assay Kits, including total antioxidation capacity (T-AOC), glutathione peroxidase (GSH-Px), and primary antioxidant enzyme Superoxide dismutase (SOD) were induced by NAC treatment in NRCMs previously treated with phenylephrine. Mechanistically, we noticed that the protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and AKT were increased by NAC stimulation. More importantly, we identified that the negative regulation of NAC in cardiomyocyte dysfunction was contributed by PI3K/AKT signaling pathway through further utilization of PI3K/AKT inhibitor (LY294002) or agonist (SC79). CONCLUSIONS: Collected, NAC could attenuate cardiomyocyte dysfunction subjected to phenylephrine, partially by regulating the ROS-induced PI3K/AKT-dependent signaling pathway.


Subject(s)
Acetylcysteine , Phosphatidylinositol 3-Kinase , Rats , Animals , Phosphatidylinositol 3-Kinase/metabolism , Acetylcysteine/pharmacology , Acetylcysteine/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Phenylephrine/pharmacology , Signal Transduction , Oxidative Stress , Apoptosis
6.
Basic Res Cardiol ; 119(1): 57-74, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151579

ABSTRACT

Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.


Subject(s)
Myocardial Infarction , Animals , Dogs , Arrhythmias, Cardiac , Heart/innervation , Ventricular Fibrillation/etiology , Ventricular Fibrillation/prevention & control , Ganglia, Sympathetic/metabolism
7.
J Am Heart Assoc ; 12(17): e028185, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37642020

ABSTRACT

Background Pathological cardiac hypertrophy is a major cause of heart failure morbidity. The complex mechanism of intermolecular interactions underlying the pathogenesis of cardiac hypertrophy has led to a lack of development and application of therapeutic methods. Methods and Results Our study provides the first evidence that TRAF4, a member of the tumor necrosis factor receptor-associated factor (TRAF) family, acts as a promoter of cardiac hypertrophy. Here, Western blotting assays demonstrated that TRAF4 is upregulated in cardiac hypertrophy. Additionally, TRAF4 deletion inhibits the development of cardiac hypertrophy in a mouse model after transverse aortic constriction surgery, whereas its overexpression promotes phenylephrine stimulation-induced cardiomyocyte hypertrophy in primary neonatal rat cardiomyocytes. Mechanistically, RNA-seq analysis revealed that TRAF4 promoted the activation of the protein kinase B pathway during cardiac hypertrophy. Moreover, we found that inhibition of protein kinase B phosphorylation rescued the aggravated cardiomyocyte hypertrophic phenotypes caused by TRAF4 overexpression in phenylephrine-treated neonatal rat cardiomyocytes, suggesting that TRAF4 may regulate cardiac hypertrophy in a protein kinase B-dependent manner. Conclusions Our results revealed the regulatory function of TRAF4 in cardiac hypertrophy, which may provide new insights into developing therapeutic and preventive targets for this disease.


Subject(s)
Heart Failure , Proto-Oncogene Proteins c-akt , Mice , Animals , Rats , TNF Receptor-Associated Factor 4 , Phenylephrine/pharmacology , Cardiomegaly
8.
Int J Exp Pathol ; 104(5): 237-246, 2023 10.
Article in English | MEDLINE | ID: mdl-37431082

ABSTRACT

Recently macrophage polarization has emerged as playing an essential role in the oathogenesis of atherosclerosis, which is the most important underlying process in many types of cardiovascular diseases. Although Nek6 has been reported to be involved in various cellular processes, the effect of Nek6 on macrophage polarization remains unknown. Macrophages exposed to lipopolysaccharide (LPS) or IL-4 were used to establish an in vitro model for the study of regulation of classically (M1) or alternatively (M2) activated macrophage. Bone marrow-derived macrophages (BMDMs) transfected with short hairpin RNA-targeting Nek6 were then in functional studies. We observed that Nek6 expression was decreased in both peritoneal macrophages (PMs) and BMDMs stimulated by LPS. This effect was seen at both mRNA and protein level. The opposite results were obtained after administration of IL-4. Macrophage-specific Nek6 knockdown significantly exacerbated pro-inflammatory M1 polarized macrophage gene expression in response to LPS challenge, but the anti-inflammatory response gene expression that is related to M2 macrophages was attenuated by Nek6 silencing followed by treatment with IL-4. Mechanistic studies exhibited that Nek6 knockdown inhibited the phosphorylated STAT3 expression that mediated the effect on macrophage polarization regulated by AdshNek6. Moreover, decreased Nek6 expression was also observed in atherosclerotic plaques. Collectively, these evidences suggested that Nek6 acts as a crucial site in macrophage polarization, and that this operates in a STAT3-dependent manner.


Subject(s)
Macrophages , NIMA-Related Kinases , STAT3 Transcription Factor , Interleukin-4/pharmacology , Interleukin-4/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Phenotype , RNA, Small Interfering , Animals , Mice , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , STAT3 Transcription Factor/metabolism
10.
Atherosclerosis ; 372: 1-9, 2023 05.
Article in English | MEDLINE | ID: mdl-37004300

ABSTRACT

BACKGROUND AND AIMS: The distribution of lipoprotein(a) [Lp(a)] has not been well-studied in a large population in China. The relationship between Lp(a) and carotid atherosclerosis remains undefined. In this study, we aimed to investigate the distribution of Lp(a) levels and to assess their association with carotid arteriopathy in China. METHODS: In this cross-sectional study, 411,634 adults with Lp(a) measurements from 22 health check-up centers were used to investigate Lp(a) distribution in China. Among participants with Lp(a) data, carotid ultrasound was performed routinely at seven health check-up centers covering 75,305 subjects. Carotid intima-media thickness (cIMT) and carotid plaque were used as surrogate biomarkers of carotid arteriopathy. The multivariate logistic regression model was applied to evaluate the association of increased Lp(a) levels with carotid arteriopathy. RESULTS: The distribution of Lp(a) concentrations was right-skewed, with a median concentration of 10.60 mg/dL. The proportions of Lp(a) levels ≥30 mg/dL and ≥50 mg/dL were 16.75% and 7.10%, respectively. The median Lp(a) level was higher in females individuals in northern China, and increased with age. Spearman's analysis revealed weak correlations between the Lp(a) concentration as a continuous variable and other lipid profiles. The multiple logistic regression analysis showed that participants with Lp(a) levels ≥50 mg/dL had an increased risk of cIMT ≥1.0 mm (OR = 1.138, 95% CI, 1.071-1.208) and carotid plaque (OR = 1.296, 95% CI, 1.219-1.377) compared with those with Lp(a) levels <50 mg/dL. CONCLUSIONS: This is the first study of the Lp(a) distribution in a large population in China. Our findings revealed a positive association between elevated Lp(a) levels (≥50 mg/dL) and increased prevalence of carotid atherosclerosis, which implies an increased risk of cardiovascular disease in the future.


Subject(s)
Carotid Artery Diseases , Plaque, Atherosclerotic , Adult , Female , Humans , Lipoprotein(a) , Carotid Intima-Media Thickness , Cross-Sectional Studies , East Asian People , Carotid Artery Diseases/epidemiology , Plaque, Atherosclerotic/complications , Risk Factors
11.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1354-1367, 2023 08.
Article in English | MEDLINE | ID: mdl-37086230

ABSTRACT

BACKGROUND: Electrical stimulation of the left stellate ganglion (LSG) can evoke ventricular arrhythmias (VAs) that originate from the right ventricular outflow tract (RVOT). The involvement of pulmonary artery innervation is unclear. OBJECTIVES: This study investigated the effects of selective pulmonary artery denervation (PADN) on blood pressure (BP), sympathetic activity, ventricular effective refractory period (ERP), and the incidence of VAs induced by LSG stimulation in canines. METHODS: Radiofrequency ablation with basic anesthetic monitoring was used to induce PADN in canines. In Protocol 1 (n = 11), heart rate variability, serum norepinephrine and angiotensin-II levels, BP changes and ventricular ERP in response to LSG stimulation were measured before and after PADN. In Protocol 2 (n = 8), the incidence of VAs induced by LSG stimulation was calculated before and after PADN in a canine model of complete atrioventricular block. In addition, sympathetic nerves in the excised pulmonary arteries were immunohistochemically stained with tyrosine hydroxylase. RESULTS: The low-frequency components of heart rate variability, serum norepinephrine and angiotensin-II levels were remarkably decreased post-PADN. Systolic BP elevation and RVOT ERP shortening induced by LSG stimulation were mitigated by PADN. The number of RVOT-premature ventricular contractions as well as RVOT tachycardia episodes and duration induced by LSG stimulation were significantly reduced after PADN. In addition, a large number of tyrosine hydroxylase-immunoreactive nerve fibers were located in the anterior wall of the pulmonary artery. CONCLUSIONS: PADN ameliorated RVOT ERP shortening, and RVOT-VAs induced by LSG stimulation by inhibiting cardiac sympathetic nerve activity.


Subject(s)
Pulmonary Artery , Stellate Ganglion , Animals , Dogs , Tyrosine 3-Monooxygenase , Arrhythmias, Cardiac , Norepinephrine , Denervation/adverse effects , Angiotensins
12.
J Mol Med (Berl) ; 100(12): 1721-1739, 2022 12.
Article in English | MEDLINE | ID: mdl-36396746

ABSTRACT

Metabolic cardiomyopathy is an emerging cause of heart failure in patients with obesity, insulin resistance, and diabetes. It is characterized by impaired myocardial metabolic flexibility, intramyocardial triglyceride accumulation, and lipotoxic damage in association with structural and functional alterations of the heart, unrelated to hypertension, coronary artery disease, and other cardiovascular diseases. Oxidative stress plays an important role in the development and progression of metabolic cardiomyopathy. Mitochondria are the most significant sources of reactive oxygen species (ROS) in cardiomyocytes. Disturbances in myocardial substrate metabolism induce mitochondrial adaptation and dysfunction, manifested as a mismatch between mitochondrial fatty acid oxidation and the electron transport chain (ETC) activity, which facilitates ROS production within the ETC components. In addition, non-ETC sources of mitochondrial ROS, such as ß-oxidation of fatty acids, may also produce a considerable quantity of ROS in metabolic cardiomyopathy. Augmented ROS production in cardiomyocytes can induce a variety of effects, including the programming of myocardial energy substrate metabolism, modulation of metabolic inflammation, redox modification of ion channels and transporters, and cardiomyocyte apoptosis, ultimately leading to the structural and functional alterations of the heart. Based on the above mechanistic views, the present review summarizes the current understanding of the mechanisms underlying metabolic cardiomyopathy, focusing on the role of oxidative stress.


Subject(s)
Cardiomyopathies , Humans , Reactive Oxygen Species/metabolism , Cardiomyopathies/etiology , Oxidative Stress , Energy Metabolism , Myocardium/metabolism
13.
Front Endocrinol (Lausanne) ; 13: 1007171, 2022.
Article in English | MEDLINE | ID: mdl-36237179

ABSTRACT

Background and aims: The epidemiological characteristics of MAFLD and its relationship with atrial fibrillation (AF) are limited in China. Therefore, we explored the epidemiological characteristics of MAFLD from adults along with the association of MAFLD and 12-ECG diagnosed AF in a nationwide population from health check-up centers. Methods: This observational study used cross-sectional and longitudinal studies with 2,083,984 subjects from 2009 to 2017. Age-, sex-, and regional-standardized prevalence of MAFLD was estimated. Latent class analysis (LCA) was used to identify subclusters of MAFLD. Multivariable logistic regression and mixed-effects Cox regression models were used to analyze the relationship between MAFLD and AF. Results: The prevalence of MAFLD increased from 22.75% to 35.58% during the study period, with higher rates in males and populations with high BMI or resided in northern regions. The MAFLD population was clustered into three classes with different metabolic features by LCA. Notably, a high proportion of MAFLD patients in all clusters had overweight and prediabetes or diabetes. The MAFLD was significantly associated with a higher risk of AF in the cross-sectional study and in the longitudinal study. In addition, the coexistence of prediabetes or diabetes had the largest impact on subsequent AF. Conclusion: Our findings suggested a high prevalence of MAFLD and a high prevalence of other metabolic diseases in the MAFLD population, particularly overweight and glucose dysregulation. Moreover, MAFLD was associated with a significantly higher risk for existing and subsequent subclinical AF in the Chinese population.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus , Prediabetic State , Adult , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , China/epidemiology , Cross-Sectional Studies , Glucose , Humans , Longitudinal Studies , Male , Overweight , Prevalence , Risk Factors
14.
Am J Physiol Cell Physiol ; 323(2): C630-C639, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35759443

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease due to the global pandemic of metabolic diseases. Dysregulation of hepatic lipid metabolism plays a central role in the initiation and progression of NAFLD. With the advancement of lipidomics, an increasing number of lipid species and underlying mechanisms associating hepatic lipid components have been revealed. Therefore, the focus of this review is to highlight the links between hepatic lipid species and their mechanisms mediating the pathogenesis of NAFLD. We first summarized the interplay between NAFLD and hepatic lipid disturbances. Next, we focused on reviewing the role of saturated fatty acids, cholesterol, oxidized phospholipids, and their respective intermediates in the pathogenesis of NAFLD. The mechanisms by which monounsaturated fatty acids and other pro-resolving mediators exert protective effects are also addressed. Finally, we further discussed the implication of different analysis approaches in lipidomics. Evolving insights into the pathophysiology of NAFLD will provide the opportunity for drug development.


Subject(s)
Non-alcoholic Fatty Liver Disease , Fatty Acids/metabolism , Humans , Lipid Metabolism , Lipidomics , Liver/metabolism , Non-alcoholic Fatty Liver Disease/pathology
15.
Circ Res ; 130(10): 1586-1600, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35437018

ABSTRACT

BACKGROUND: Pathological cardiac hypertrophy is one of the leading causes of heart failure with highly complicated pathogeneses. The E3 ligase TRIM16 (tripartite motif-containing protein 16) has been recognized as a pivotal regulator to control cell survival, immune response, and oxidativestress. However, the role of Trim16 in cardiac hypertrophy is unknown. METHODS: We generated cardiac-specific knockout mice and adeno-associated virus serotype 9-Trim16 mice to evaluate the function of Trim16 in pathological myocardial hypertrophy. The direct effect of TRIM16 on cardiomyocyte enlargement was examined using an adenovirus system. Furthermore, we combined RNA-sequencing and interactome analysis that was followed by multiple molecular biological methodologies to identify the direct target and corresponding molecular events contributing to TRIM16 function. RESULTS: We found an intimate correlation of Trim16 expression with hypertrophy-related heart failure in both human and mouse. Our functional investigations and unbiased transcriptomic analyses clearly demonstrated that Trim16 deficiency markedly exacerbated cardiomyocyte enlargement in vitro and in transverse aortic constriction-induced cardiac hypertrophy mouse model, whereas Trim16 overexpression attenuated cardiac hypertrophy and remodeling. Mechanistically, Prdx1 (peroxiredoxin 1) is an essential target of Trim16 in cardiac hypertrophy. We found that Trim16 interacts with Prdx1 and inhibits its phosphorylation, leading to a robust enhancement of its downstream Nrf2 (nuclear factor-erythroid 2-related factor 2) pathway to block cardiac hypertrophy. Trim16-blocked Prdx1 phosphorylation was largely dependent on a direct interaction between Trim16 and Src and the resultant Src ubiquitinational degradation. Notably, Prdx1 knockdown largely abolished the anti-hypertrophic effects of Trim16 overexpression. CONCLUSIONS: Our findings provide the first evidence supporting Trim16 as a novel suppressor of pathological cardiac hypertrophy and indicate that targeting the Trim16-Prdx1 axis represents a promising therapeutic strategy for hypertrophy-related heart failure.


Subject(s)
Cardiomegaly , Heart Failure , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Cardiomegaly/metabolism , Disease Models, Animal , Heart Failure/metabolism , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
16.
Chin Med Sci J ; 37(2): 103-117, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35256042

ABSTRACT

Objective To explore the association between lipid profiles and left ventricular hypertrophy in a Chinese general population. Methods We conducted a retrospective observational study to investigate the relationship between lipid markers [including triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL-cholesterol, apolipoprotein A-I, apolipoprotein B, lipoprotein[a], and composite lipid profiles] and left ventricular hypertrophy. A total of 309,400 participants of two populations (one from Beijing and another from nationwide) who underwent physical examinations at different health management centers between 2009 and 2018 in China were included in the cross-sectional study. 7,475 participants who had multiple physical examinations and initially did not have left ventricular hypertrophy constituted a longitudinal cohort to analyze the association between lipid markers and the new-onset of left ventricular hypertrophy. Left ventricular hypertrophy was measured by echocardiography and defined as an end-diastolic thickness of the interventricular septum or left ventricle posterior wall > 11 mm. The Logistic regression model was used in the cross-sectional study. Coxmodel and Coxmodel with restricted cubic splines were used in the longitudinal cohort. Results In the cross-sectional study, for participants in the highest tertile of each lipid marker compared to the respective lowest, triglycerides [odds ratio (OR): 1.250, 95%CI: 1.060 to 1.474], HDL-cholesterol (OR: 0.780, 95%CI: 0.662 to 0.918), and lipoprotein(a) (OR: 1.311, 95%CI: 1.115 to 1.541) had an association with left ventricular hypertrophy. In the longitudinal cohort, for participants in the highest tertile of each lipid marker at the baseline compared to the respective lowest, triglycerides [hazard ratio (HR): 3.277, 95%CI: 1.720 to 6.244], HDL-cholesterol (HR: 0.516, 95%CI: 0.283 to 0.940), non-HDL-cholesterol (HR: 2.309, 95%CI: 1.296 to 4.112), apolipoprotein B (HR: 2.244, 95%CI: 1.251 to 4.032) showed an association with new-onset left ventricular hypertrophy. In the Coxmodel with forward stepwise selection, triglycerides were the only lipid markers entered into the final model. Conclusion Lipids levels, especially triglycerides, are associated with left ventricular hypertrophy. Controlling triglycerides level potentiate to be a strategy in harnessing cardiac remodeling but deserve to be further investigated.


Subject(s)
Cholesterol , Hypertrophy, Left Ventricular , Biomarkers , Cholesterol, HDL , Cross-Sectional Studies , Humans , Hypertrophy, Left Ventricular/epidemiology , Retrospective Studies , Triglycerides
17.
Exp Ther Med ; 22(1): 714, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34007323

ABSTRACT

Morphine has been widely used for the treatment of pain and extensive studies have revealed a regulatory role for morphine in cell apoptosis. However, the molecular mechanisms underlying morphine-mediated apoptosis remain to be fully elucidated. The present study aimed to investigate the effects of morphine on lipopolysaccharide (LPS)-induced bone marrow-derived macrophage (BMDM) apoptosis and to determine the role of the peroxisome proliferator-activated receptor (PPAR)γ signaling pathway in this process. BMDMs were isolated from BALB/c mice and stimulated with LPS. Hoechst 33342 staining and flow cytometric analysis were performed to evaluate the effects of morphine on LPS-induced apoptosis of BMDMs. Caspase activity assays were used to determine the involvement of the apoptosis pathway. The expression levels of caspase-3, caspase-8, caspase-9 and PPARγ were analyzed using western blotting. Finally, GW9662, a specific PPARγ antagonist, was used to determine whether the regulatory effects of morphine on LPS-induced BMDM apoptosis were PPARγ-dependent. The results of the present study revealed that morphine increased the apoptosis of LPS-stimulated BMDMs. Morphine upregulated the expression levels and activity of caspase-3 in LPS-stimulated BMDMs, but downregulated the expression levels and activity of caspase-8. Morphine treatment also upregulated LPS-induced PPARγ expression levels in BMDMs. Finally, the stimulatory effects of morphine on LPS-induced apoptosis and caspase-3/9 activation were markedly reduced by GW9662. In conclusion, the findings of the present study indicated that morphine significantly promoted LPS-induced BMDM apoptosis and caspase-3/9 activation. These results suggested that the intrinsic pathway of apoptosis may be involved in the proapoptotic effects of morphine on LPS-stimulated BMDMs, which may be dependent, at least partially, on PPARγ activation.

18.
Front Cardiovasc Med ; 8: 654405, 2021.
Article in English | MEDLINE | ID: mdl-34055936

ABSTRACT

Background: Accumulating evidence has revealed that coronavirus disease 2019 (COVID-19) patients may be complicated with myocardial injury during hospitalization. However, data regarding persistent cardiac involvement in patients who recovered from COVID-19 are limited. Our goal is to further explore the sustained impact of COVID-19 during follow-up, focusing on the cardiac involvement in the recovered patients. Methods: In this prospective observational follow-up study, we enrolled a total of 40 COVID-19 patients (20 with and 20 without cardiac injury during hospitalization) who were discharged from Zhongnan Hospital of Wuhan University for more than 6 months, and 27 patients (13 with and 14 without cardiac injury during hospitalization) were finally included in the analysis. Clinical information including self-reported symptoms, medications, laboratory findings, Short Form 36-item scores, 6-min walk test, clinical events, electrocardiogram assessment, echocardiography measurement, and cardiac magnetic resonance imaging was collected and analyzed. Results: Among 27 patients finally included, none of patients reported any obvious cardiopulmonary symptoms at the 6-month follow-up. There were no statistically significant differences in terms of the quality of life and exercise capacity between the patients with and without cardiac injury. No significant abnormalities were detected in electrocardiogram manifestations in both groups, except for nonspecific ST-T changes, premature beats, sinus tachycardia/bradycardia, PR interval prolongation, and bundle-branch block. All patients showed normal cardiac structure and function, without any statistical differences between patients with and without cardiac injury by echocardiography. Compared with patients without cardiac injury, patients with cardiac injury exhibited a significantly higher positive proportion in late gadolinium enhancement sequences [7/13 (53.8%) vs. 1/14 (7.1%), p = 0.013], accompanied by the elevation of circulating ST2 level [median (interquartile range) = 16.6 (12.1, 22.5) vs. 12.5 (9.5, 16.7); p = 0.044]. Patients with cardiac injury presented higher levels of aspartate aminotransferase, creatinine, high-sensitivity troponin I, lactate dehydrogenase, and N-terminal pro-B-type natriuretic peptide than those without cardiac injury, although these indexes were within the normal range for all recovered patients at the 6-month follow-up. Among patients with cardiac injury, patients with positive late gadolinium enhancement presented higher cardiac biomarker (high-sensitivity troponin I) and inflammatory factor (high-sensitivity C-reactive protein) on admission than the late gadolinium enhancement-negative subgroup. Conclusions: Our preliminary 6-month follow-up study with a limited number of patients revealed persistent cardiac involvement in 29.6% (8/27) of recovered patients from COVID-19 after discharge. Patients with cardiac injury during hospitalization were more prone to develop cardiac fibrosis during their recovery. Among patients with cardiac injury, those with relatively higher cardiac biomarkers and inflammatory factors on admission appeared more likely to have cardiac involvement in the convalescence phase.

19.
Front Med (Lausanne) ; 7: 584870, 2020.
Article in English | MEDLINE | ID: mdl-33330541

ABSTRACT

Background: Statins have multiple protective effects on inflammation, immunity and coagulation, and may help alleviate pneumonia. However, there was no report focusing on the association of statin use with in-hospital outcomes of patients with coronavirus disease 2019 (COVID-19). We investigated the association between the use of statins and in-hospital outcomes of patients with COVID-19. Methods: In this retrospective case series, consecutive COVID-19 patients admitted at 2 hospitals in Wuhan, China, from March 12, 2020 to April 14, 2020 were analyzed. A 1:1 matched cohort was created by propensity score-matched analysis. Demographic data, laboratory findings, comorbidities, treatments and in-hospital outcomes were collected and compared between COVID-19 patients taking and not taking statins. Result: A total of 2,147 patients with COVID-19 were enrolled in this study. Of which, 250 patients were on statin therapy. The mortality was 2.4% (6/250) for patients taking statins while 3.7% (70/1,897) for those not taking statins. In the multivariate Cox model, after adjusting for age, gender, admitted hospital, comorbidities, in-hospital medications and blood lipids, the risk was lower for mortality (adjusted HR, 0.428; 95% CI, 0.169-0.907; P = 0.029), acute respiratory distress syndrome (ARDS) (adjusted HR, 0.371; 95% CI, 0.180-0.772; P = 0.008) or intensive care unit (ICU) care (adjusted HR, 0.319; 95% CI, 0.270-0.945; P = 0.032) in the statin group vs. the non-statin group. After propensity score-matched analysis based on 18 potential confounders, a 1:1 matched cohort (206:206) was created. In the matched cohort, the Kaplan-Meier survival curves showed that the use of statins was associated with better survival (P = 0.025). In a Cox regression model, the use of statins was associated with lower risk of mortality (unadjusted HR, 0.254; 95% CI, 0.070-0.926; P = 0.038), development of ARDS (unadjusted HR, 0.240; 95% CI, 0.087-0.657; P = 0.006), and admission of ICU (unadjusted HR, 0.349; 95% CI, 0.150-0.813; P = 0.015). The results remained consistent when being adjusted for age, gender, total cholesterol, triglyceride, low density lipoprotein cholesterol, procalcitonin, and brain natriuretic peptide. The favorable outcomes in statin users remained statistically significant in the first sensitivity analysis with comorbid diabetes being excluded in matching and in the second sensitivity analysis with chronic obstructive pulmonary disease being added in matching. Conclusion: In this retrospective analysis, the use of statins in COVID-19 patients was associated with better clinical outcomes and is recommended to be continued in patients with COVID-19.

20.
J Am Heart Assoc ; 9(16): e016419, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32805187

ABSTRACT

Background The development of pathological cardiac hypertrophy involves the coordination of a series of transcription activators and repressors, while their interplay to trigger pathological gene reprogramming remains unclear. NULP1 (nuclear localized protein 1) is a member of the basic helix-loop-helix family of transcription factors and its biological functions in pathological cardiac hypertrophy are barely understood. Methods and Results Immunoblot and immunostaining analyses showed that NULP1 expression was consistently reduced in the failing hearts of patients and hypertrophic mouse hearts and rat cardiomyocytes. Nulp1 knockout exacerbates aortic banding-induced cardiac hypertrophy pathology, which was significantly blunted by transgenic overexpression of Nulp1. Signal pathway screening revealed the nuclear factor of activated T cells (NFAT) pathway to be dramatically suppressed by NULP1. Coimmunoprecipitation showed that NULP1 directly interacted with the topologically associating domain of NFAT3 via its C-terminal region, which was sufficient to suppress NFAT3 transcriptional activity. Inactivation of the NFAT pathway by VIVIT peptides in vivo rescued the aggravated pathogenesis of cardiac hypertrophy resulting from Nulp1 deficiency. Conclusions NULP1 is an endogenous suppressor of NFAT3 signaling under hypertrophic stress and thus negatively regulates the pathogenesis of cardiac hypertrophy. Targeting overactivated NFAT by NULP1 may be a novel therapeutic strategy for the treatment of pathological cardiac hypertrophy and heart failure.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cardiomegaly/metabolism , NFATC Transcription Factors/metabolism , Repressor Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Cardiomegaly/diagnostic imaging , Cardiomegaly/genetics , Cardiomegaly/therapy , Echocardiography , Gene Deletion , Humans , Immunoprecipitation/methods , Mice , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/metabolism , NFATC Transcription Factors/antagonists & inhibitors , NFATC Transcription Factors/genetics , Oligopeptides/pharmacology , Phosphoric Monoester Hydrolases/metabolism , Rats , Rats, Sprague-Dawley , Repressor Proteins/deficiency , Repressor Proteins/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...