Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Br J Cancer ; 130(9): 1517-1528, 2024 May.
Article in English | MEDLINE | ID: mdl-38459187

ABSTRACT

BACKGROUND: Circß-catenin, our first reported circRNA, has been reported to mediate tumorigenesis in various cancers. However, its biological functions and underlying mechanisms in colorectal cancer (CRC) remain unknown. METHODS: The qRT-PCR examination was used to detect the expression of circß-catenin, miR-197-3p, and CTNND1 in cells and human tissues. Western blot was conducted to detect the protein expression levels. The biological function of circß-catenin was verified by MTT, colony formation, wound healing, and transwell assays. The in vivo effects of circß-catenin were verified by nude mice xenograft and metastasis models. The regulatory network of circß-catenin/miR-197-3p/CTNND1 was confirmed via dual-luciferase reporter and RIP assays. RESULTS: In the present study, circß-catenin was found to promote CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, circß-catenin served as miRNA decoy to directly bind to miR-197-3p, then antagonized the repression of the target gene CTNND1, and eventually promoted the malignant phenotype of CRC. More interestingly, the inverted repeated Alu pairs termed AluJb1/2 and AluY facilitated the biogenesis of circß-catenin, which could be partially reversed by EIF4A3 binding to Alu element AluJb2. CONCLUSIONS: Our findings illustrated a novel mechanism of circß-catenin in modulating CRC tumorigenesis and metastasis, which provides a potential therapeutic target for CRC patients.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Disease Progression , Eukaryotic Initiation Factor-4A , Mice, Nude , MicroRNAs , RNA, Circular , beta Catenin , MicroRNAs/genetics , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , RNA, Circular/genetics , Animals , Mice , beta Catenin/metabolism , beta Catenin/genetics , Cell Proliferation/genetics , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Delta Catenin , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Male , Female , Cell Movement/genetics , Mice, Inbred BALB C
2.
Cancer Gene Ther ; 30(6): 855-865, 2023 06.
Article in English | MEDLINE | ID: mdl-36782047

ABSTRACT

A major cause of oxaliplatin chemoresistance in colorectal cancer (CRC) is acquired epithelial-mesenchymal transition (EMT) in cancer cells, making the cancer cells easy to metastasis and recurrence. LncRNA Neighboring Enhancer of FOXA2 (lncRNA-NEF) has been characterized as a tumor suppressor to mediate cancer metastasis in multiple cancer types. However, whether it mediated the drug resistance remains unknown. In the present study, an oxaliplatin-resistant CRC cell line (SW620R) was established and lncRNA-NEF was obviously down-regulated in this resistant cell line. The further loss and gain-of-function studies demonstrated that this lncRNA suppressed oxaliplatin resistance as well as EMT programme in vitro and inhibited metastasis in vivo. Mechanistically, lncRNA-NEF epigenetically promoted the expression of DOK1 (Downstream of Tyrosine kinase 1), a negative regulator of MEK/ERK signaling, by disrupting DNA methyltransferases (DNMTs)-mediated DNA methylation. DOK1, in turn, induced the inactivation of MEK/ERK signaling, forming the lncRNA-NEF/DOK1/MEK/ERK regulatory axis to mediate oxaliplatin resistance in CRC. Collectively, our work reveals the critical function of lncRNA-NEF in mediating the oxaliplatin chemotherapy resistance in CRC, and provides a promising therapeutic strategy for CRC patients with oxaliplatin resistance.


Subject(s)
Colorectal Neoplasms , RNA, Long Noncoding , Humans , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , RNA, Long Noncoding/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Mitogen-Activated Protein Kinase Kinases/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic
3.
Cell Biol Toxicol ; 39(4): 1735-1752, 2023 08.
Article in English | MEDLINE | ID: mdl-36576707

ABSTRACT

Adriamycin is widely used as a chemotherapeutic strategy for advanced hepatocellular carcinoma (HCC). However, the clinical response was disappointing because of the acquired drug resistance with long-term usage. Revealing the underlying mechanism could provide promising therapeutics for the drug-resistant patients. The recently identified linc-ROR (long intergenic non-protein-coding RNA, regulator of reprogramming) has been found to be an oncogene in various cancers, and it also demonstrated to mediate drug resistance and metastasis. We thereby wonder whether this lincRNA could mediate adriamycin chemoresistance in HCC. In this study, linc-ROR was found to be upregulated in adriamycin-resistant HCC cells. And its overexpression accelerated epithelial-mesenchymal transition (EMT) program and adriamycin resistance. Conversely, its silence suppressed EMT and made HCC cells sensitize to adriamycin in vitro and in vivo. Further investigation revealed that linc-ROR physically interacted with AP-2α, mediated its stability by a post-translational modification manner, and sequentially activated Wnt/ß-catenin pathway. Furthermore, linc-ROR expression was positively associated with ß-catenin expression in human clinical specimens. Taken together, linc-ROR promoted tumorigenesis and adriamycin resistance in HCC via a linc-ROR/AP-2α/Wnt/ß-catenin axis, which could be developed as a potential therapeutic target for the adriamycin-resistant patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , beta Catenin/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Doxorubicin/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics
4.
Bioorg Chem ; 124: 105800, 2022 07.
Article in English | MEDLINE | ID: mdl-35468415

ABSTRACT

Icariside II, a flavonol glycoside, one of the major components of Traditional Chinese Medicine Herba epimedii. In the present study, we found that Icariside II suppressed the proliferation of CRC by inducing cell cycle arrest and apoptosis in vitro and inhibited tumor growth in vivo. The further mechanism investigation showed that Icariside II suppressed the expression of ß-catenin and led to the functional inactivation of Wnt/ß-catenin signaling. Circß-catenin was considered as a promising candidate for mediating the tumorigenesis and the activation of Wnt/ß-catenin signaling in CRC cells. Furthermore, Icariside II has been proven to suppress the biogenesis of circß-catenin via epigenetically targeting DNA methyltransferases (DNMTs) to decrease global DNA methylation levels in CRC cells. Taken together, our results indicated that Icariside II suppressed tumorigenesis by epigenetically silencing the activation of circß-catenin-Wnt/ß-catenin axis in colorectal cancer. More importantly, the information gained from this study suggest that Icariside II may have great potential to be developed as a therapeutic drug for CRC patients.


Subject(s)
Catenins , Colorectal Neoplasms , Flavonoids , Wnt Signaling Pathway , beta Catenin , Carcinogenesis , Catenins/metabolism , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Epigenesis, Genetic/drug effects , Flavonoids/pharmacology , Humans , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism
5.
Zhen Ci Yan Jiu ; 42(2): 145-8, 2017 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-29071963

ABSTRACT

OBJECTIVE: To observe the expression of catechol-O-methyltransferase (COMT) in inferior colliculus and auditory cortex of guinea pigs with age-related hearing loss(AHL) induced by D-galactose, so as to explore the possible mechanism of electroacupuncture(EA) underlying preventing AHL. METHODS: Thirty 3-month-old guinea pigs were randomly divided into control group, model group and EA group(n=10 in each group), and ten 18-month-old guinea pigs were allocated as elderly group. The AHL model was established by subcutaneous injection of D-galactose. EA was applied to bilateral "Yifeng"(SJ 17) and "Tinggong"(SI 19) for 15 min in the EA group while modeling, once daily for 6 weeks. After treatment, the latency of auditory brainstem response(ABR) Ⅲ wave was measured by a brain-stem evoked potentiometer. The expressions of COMT in the inferior colliculus and auditory cortex were detected by Western blot. RESULTS: Compared with the control group, the latencies of ABR Ⅲ wave were significantly prolonged and the expressions of COMT in the inferior colliculus and auditory cortex were significantly decreased in the model group and the elderly group(P<0.05). After the treatment, the latency of ABR Ⅲ wave was significantly shortened and the expressions of COMT in the inferior colliculus and auditory cortex were significantly increased in the EA group in comparison with the model group (P<0.05). CONCLUSIONS: EA at "Yifeng" (SJ 17) and "Tinggong" (SI 19) can improve the hearing of age-related deafness in guinea pigs, which may contribute to its effect in up-regulating the expression of COMT in the inferior colliculus and auditory cortex.


Subject(s)
Auditory Cortex/enzymology , Catechol O-Methyltransferase/genetics , Electroacupuncture , Inferior Colliculi/enzymology , Presbycusis/therapy , Animals , Catechol O-Methyltransferase/metabolism , Female , Guinea Pigs , Humans , Male , Presbycusis/enzymology , Presbycusis/genetics
6.
Ying Yong Sheng Tai Xue Bao ; 26(9): 2673-80, 2015 Sep.
Article in Chinese | MEDLINE | ID: mdl-26785548

ABSTRACT

Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.


Subject(s)
Geologic Sediments , Rain , Soil/chemistry , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...