Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 18(1): 19-47, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34901989

ABSTRACT

Sputter deposition onto a low volatile liquid matrix is a recently developed green synthesis method for metal/metal oxide nanoparticles (NPs). In this review, we introduce the synthesis method and highlight its unique features emerging from the combination of the sputter deposition and the ability of the liquid matrix to regulate particle growth. Then, manipulating the synthesis parameters to control the particle size, composition, morphology, and crystal structure of NPs is presented. Subsequently, we evaluate the key experimental factors governing the particle characteristics and the formation of monometallic and alloy NPs to provide overall directions and insights into the preparation of NPs with desired properties. Following that, the current understanding of the growth and formation mechanism of sputtered particles in liquid media, in particular, ionic liquids and liquid polymers, during and after sputtering is emphasized. Finally, we discuss the challenges that remain and share our perspectives on the future prospects of the synthesis method and the obtained NPs.

2.
Langmuir ; 37(19): 6096-6105, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33960790

ABSTRACT

Pt/Ag solid solution alloy nanoparticles (NPs) with mean size below 3 nm were obtained with composition in miscibility gaps by cosputtering onto liquid polyethylene glycol (PEG, MW = 600). Adjusting the sputtering currents from 10 to 50 mA did not influence the particle sizes obviously but caused a substantial difference in the composition and distributions of Pt/Ag NPs. This is different from sputtered Pt/Au NPs where particle size is correlated with composition. For a pair of sputtering currents, the formed Pt/Ag alloy NPs have a range of compositions. The normal distribution with Pt of 60.2 ± 16.2 at % is observed for the Pt/Ag sample with a nominal Pt content of 55.9 at %, whereas Pt-rich (85.1 ± 14.0 at % Pt) and Ag-rich (19.8 ± 12.2 at % Pt) Pt/Ag samples with nominal Pt contents of 90.9 and 11.9 at % contain more pure Pt and pure Ag NPs, respectively. Different from NPs obtained in PEG, the sputtered NPs on TEM grids had more uniform composition for a longer sputtering time along with a significant increase of particle sizes. This reveals that PEG hindered the combination of NPs and clusters, resulting in small particle sizes even for long time sputtering and broader composition distributions. Thus, the samples obtained in PEG have the compositions mainly determined by the random atom combination in the vacuum chamber and possibly in initial landing of atom/clusters on the PEG surface.

3.
Langmuir ; 36(12): 3004-3015, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32150418

ABSTRACT

Pt/Au alloy nanoparticles (NPs) in a wide composition range have been synthesized by room-temperature simultaneous sputter deposition from two independent magnetron sources onto liquid PEG (MW = 600). The prepared NPs were alloyed with the face-centered cubic (fcc) structure. In addition, the particle sizes, composition, and shape are strongly correlated but can be tailored by an appropriate variation of the sputtering parameters. No individual particle but large agglomerates with partial alloy structure formed at Pt content of less than 16 atom %. Highly dispersed NPs with no agglomeration were observed in PEG when the quantity of Pt is more than 26 atom %. On the other hand, a small amount of Pt could terminate the agglomeration of Au when sputtering on the grids for transmission electron microscope observation. Our experiment and computer simulation carried out by two different methods indicate that the composition-dependent particle size of Pt/Au can be explained by the atomic concentration, formation energy of the cluster, and interaction between different metal atoms and the PEG molecule.

4.
Langmuir ; 35(25): 8418-8427, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31194557

ABSTRACT

We use a green sputtering technique to deposit a Pt/Cu alloy target on liquid polyethylene glycol (PEG) to obtain well-dispersed and stable Pt29Cu71 alloy nanoparticles (NPs). The effects of sputtering current, rotation speed of the stirrer, sputtering time, sputtering period, and temperature of PEG on the particle size are studied systematically. Our key results demonstrate that the aggregation and growth of Pt/Cu alloy NPs occurred at the surface as well as inside the liquid polymer after the particles landed on the liquid surface. According to particle size analysis, a low sputtering current, high rotation speed for the stirrer, short sputtering period, and short sputtering time are found to be favorable for producing small-sized single crystalline alloy NPs. On the other hand, varying the temperature of the liquid PEG does not have any significant impact on the particle size. Thus, our findings shed light on controlling NP growth using the newly developed green sputtering deposition technique.

5.
Langmuir ; 34(8): 2876-2881, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29384382

ABSTRACT

Matrix sputtering with the use of a low vapor pressure liquid as its matrix becomes a green technique to prepare nanoparticles dispersed in liquid. In the present study, we proposed using this method with polyethylene glycol (PEG, molecular weight = 600) as the liquid matrix to produce highly uniform Pt nanoparticles with a small size (below 2.0 nm) and a narrow size distribution. The results indicated that particle sizes were tailorable from 0.9 ± 0.3 to 1.4 ± 0.3 nm by varying the sputtering current (5-50 mA) with negligible particle aggregation that occurred in PEG during sputtering. The slight growth of the particle size observed after sputtering was attributed to the addition of free Pt atoms to the existing Pt nanoparticles. All samples formed stable dispersion in PEG for 5 month storage. This result suggested an advantage of using a liquid matrix to produce and stabilize nanoparticles.

6.
Langmuir ; 33(43): 12389-12397, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28972375

ABSTRACT

Alloy nanoparticles (NPs) of a bimetal system, Au/Cu, that form intermetallic compounds in a bulk state have been successfully produced using a double-target sputtering technique onto a low-cost and biocompatible liquid polymer (polyethylene glycol, PEG). The formation of an Au/Cu solid solution alloy in individual NPs was revealed by scanning transmission electron microscopy-energy-dispersive X-ray elemental mapping analysis. Altering the sputter currents for Au and Cu targets resulted in a tailored NP composition, but the particle sizes did not significantly vary. We found similar structures, sizes, and optical properties of Au/Cu NPs obtained by double-head sputtering on carbon-coated transmission electron microscopy grids or PEG and by Au/Cu alloy target sputtering. Random alloy formation occurred in matrix sputtering using double-target heads. This method is advantageous for manipulating the alloy composition through highly independent control of sputter parameters for each metal target.

SELECTION OF CITATIONS
SEARCH DETAIL
...