Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
Nanomicro Lett ; 17(1): 26, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331327

ABSTRACT

Low-electrode capacitive deionization (FCDI) is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters. However, it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes, both restricted by the current collectors. Herein, a new tip-array current collector (designated as T-CC) was developed to replace the conventional planar current collectors, which intensifies both the charge transfer and ion transport significantly. The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy, which revealed the reduction of ion transport barrier, charge transport barrier and internal resistance. With the voltage increased from 1.0 to 1.5 and 2.0 V, the T-CC-based FCDI system (T-FCDI) exhibited average salt removal rates (ASRR) of 0.18, 0.50, and 0.89 µmol cm-2 min-1, respectively, which are 1.82, 2.65, and 2.48 folds higher than that of the conventional serpentine current collectors, and 1.48, 1.67, and 1.49 folds higher than that of the planar current collectors. Meanwhile, with the solid content in flow electrodes increased from 1 to 5 wt%, the ASRR for T-FCDI increased from 0.29 to 0.50 µmol cm-2 min-1, which are 1.70 and 1.67 folds higher than that of the planar current collectors. Additionally, a salt removal efficiency of 99.89% was achieved with T-FCDI and the charge efficiency remained above 95% after 24 h of operation, thus showing its superior long-term stability.

2.
Front Psychol ; 15: 1383397, 2024.
Article in English | MEDLINE | ID: mdl-39171233

ABSTRACT

Introduction: Recent studies have emphasized the intricate connection between exercise and cognition, focusing on specific cognitive processes and their correlations with specific motor skills. However, research on the impact of the qualitative aspects of movement on both short- and long-term cognitive performance is limited. In this quasi-experimental study, we investigate the impact of a 10-week fancy rope-skipping intervention on motor coordination and selective attention of 7-9-year-old children. Methods: A total of 60 primary school students from Changbin School in Haikou participated and completed the study from October to December 2022. The 60 participants were divided into a fancy rope-skipping group and a control group. Children's motor coordination was assessed using the Körperkoordinations Test für Kinder (KTK), while selective attention was evaluated using the d2 Test of Attention. Children were assessed at baseline and after the 10-week intervention. Results: Compared with the control group, the scores for the total KTK and for the hopping for height, jumping sideways, and moving sideways sub-items were significantly higher in the rope-skipping group after the intervention, with a significant interaction effect between time and intervention. Attention concentration improved in the rope-skipping group and had a significant interaction effect between time and intervention compared with the control group; the effects of the intervention on other aspects of selective attention were unclear. Conclusions: Our study suggests that a 10-week fancy rope-skipping intervention may potentially enhance motor coordination and selective attention accuracy in children aged 7-9 years.

3.
Nat Commun ; 15(1): 6437, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085264

ABSTRACT

Carbon materials with defect-rich structure are highly demanded for various electrochemical scenes, but encountering a conflict with the deteriorative intrinsic conductivity. Herein, we build a highway-mediated nanoarchitecture that consists of the ordered pseudographitic nanodomains among disordered highly nitrogen-doped segments through a supramolecular self-assembly strategy. The "order-in-disorder" nanosheet-like carbon obtained at 800 °C (O/D NSLC-800) achieves a tradeoff with high defect degree (21.9 at% of doped nitrogen) and compensated electrical conductivity simultaneously. As expected, symmetrical O/D NSLC-800 electrodes exhibit superior capacitive deionization (CDI) performance, including brackish water desalination (≈82 mgNaCl g-1 at a cell voltage of 1.6 V in a 1000 mg L-1 NaCl solution) and reusage of actual refining circulating cooling water, outperforming most of the reported state-of-the-art CDI electrodes. The implanted pseudographitic nanodomains lower the resistance and activation energy of charge transfer, which motivates the synergy of hosting sites of multiple nitrogen configurations. Our findings shed light on electrically conductive nanoarchitecture design of defect-rich materials for advanced electrochemical applications based on molecular-level modulation.

4.
PeerJ ; 12: e17411, 2024.
Article in English | MEDLINE | ID: mdl-38803584

ABSTRACT

Background: This study aims to examine the relationship between functional movements and golf performance using the Golf Specific Functional Movement Screen (GSFMS). Methods: This cross-sectional study included a total of 56 collegiate golfers (aged 20.89 ± 0.99 years, height of 174.55 ± 7.76 cm, and weight 68.48 ± 9.30 kg) who met the criteria, and were recruited from Hainan Normal University in June 2022. The participants' golf motor skills (1-yard putt, 10-yard putt, 25-yard chip, 130/100-yard set shot, driver, and 9-hole stroke play) were tested and the GSFMS (e.g., pelvic tilt, pelvic rotation, and torso rotation) was used. Results: There were significant weak or moderate correlations between the variables. Furthermore, a multiple linear regression analysis found that pelvic rotation and lower-body rotation abilities can significantly predict golf skill levels, which collectively explain 31.2% of the variance in golf skill levels among collegiate golfers (Adjusted R2 = 0.312, F = 2.663, p < 0.05). Standardised ß values indicate that pelvic rotation (ß = 0.398) has a more substantial impact on golf skill levels than lower-body rotation (ß = 0.315). Conclusions: This study found the weak to moderate correlations between the GSFMS and golf performance, and pelvic rotation and lower-body rotation abilities, thus predicting golf skills. Our findings provide novel insights into the relationship between functional abilities and comprehensive skill performance within the context of the Gray Cook's Movement Pyramid model, and provide theoretical support and practical reference for collegiate golf motor-skill learning and sports injury prevention.


Subject(s)
Athletic Performance , Golf , Motor Skills , Movement , Humans , Golf/physiology , Cross-Sectional Studies , Athletic Performance/physiology , Male , Young Adult , Motor Skills/physiology , Movement/physiology , Universities , Female , Rotation
5.
Nanotechnology ; 35(29)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38593763

ABSTRACT

In this work, an advanced hybrid material was constructed by incorporating niobium pentoxide (Nb2O5) nanocrystals with nitrogen-doped carbon (NC) derived from ZIF-8 dodecahedrons, serving as a support, referred to as Nb2O5/NC. Pt nanocrystals were dispersed onto Nb2O5/NC using a simple impregnation reduction method. The obtained Pt/Nb2O5/NC electrocatalyst showed high oxygen reduction reaction (ORR) activity due to three-phase mutual contacting structure with well-dispersed Pt and Nb2O5NPs. In addition, the conductive NC benefits electron transfer, while the induced Nb2O5can regulate the electronic structure of Pt element and anchor Pt nanocrystals, thereby enhancing the ORR activity and stability. The half-wave potential (E1/2) for Pt/Nb2O5/NC is 0.886 V, which is higher than that of Pt/NC (E1/2= 0.826 V). The stability examinations demonstrated that Pt/Nb2O5/NC exhibited higher electrocatalytic durability than Pt/NC. Our work provides a new direction for synthesis and structural design of precious metal/oxides hybrid electrocatalysts.

6.
ACS Nano ; 17(24): 25519-25531, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38061890

ABSTRACT

Li metal exhibits high potential as an anode material for next-generation high-energy density batteries. However, the nonuniform transport of Li+ ions causes Li-dendrite growth at the metal electrode, leading to severe capacity decay and a short cycling life. In this study, negatively charged lithiophilic sites (such as cationic metal vacancies) were used as hosts to regulate the atomic-scale Li+-ion deposition in Li-metal batteries (LMBs). As a proof of concept, three-dimensional (3D) carbon nanofibers (CNFs) decorated with negatively charged TiNbO4 grains (labeled CNF/nc-TNO) were confirmed to be promising Li hosts. Cationic vacancies caused by the carbothermal reduction of Nb5+ and Ti4+ ions generated a negatively charged fiber surface and strong electrostatic interactions that guided the Li+-ion flux to the shadowed areas underneath the fiber and throughout the fibrous mat. Consequently, circumferential Li-metal plating was observed in the CNF/nc-TNO host, even at a high current density of 10 mA cm-2. Moreover, CNF/nc-TNO asymmetric cells delivered a significantly more robust and stable Coulombic efficiency (CE) (99.2% over 380 cycles) than cells comprising electrically neutral CNFs without cationic defects (which exhibits rapid failure after 20 cycles) or Cu foil (which exhibits rapid CE decay, with a CE of 87.1% after 100 cycles). Additionally, CNF/nc-TNO exhibited high stability and low-voltage hysteresis during repeated Li plating/stripping (for over 4000 h at 2 mA cm-2) with an areal capacity of 2 mAh cm-2. It was further paired with high-voltage LiNi0.8Co0.1Mn0.1 (NCM811) cathodes, and the full cells showed long-term cycling (220 cycles) with a CE of 99.2% and a steady rate capability.

7.
Chem Commun (Camb) ; 59(84): 12593-12596, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37791460

ABSTRACT

High-voltage lithium metal batteries (LMBs) have faced application obstacles derived from the unstable interfacial layers on both the cathode and anode sides. Herein, a dual-salt localized high-concentration electrolyte (LHCE) is optimized to modify the anion-derived inorganic-rich interfacial layers with conductive inorganic and robust organic components.

8.
J Colloid Interface Sci ; 647: 546-553, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37248161

ABSTRACT

Room-temperature sodium-sulfur (RT Na-S) batteries have been attracting enormous interests due to their low-cost, high capacity and environmental benignity. However, the shuttle effect and the sluggish electrochemical reaction activity of sodium polysulfides (NaPSs) seriously restrict their practical application. To solve these issues, we rationally designed an advanced Sn-doped In2S3/S/C cathode for RT Na-S batteries by magnetron sputtering in this work, which exhibited a high reversible capacity (1663.5 mAh g-1 at 0.1 A g-1) and excellent cycling performance (902.9 mAh g-1 after 50 cycles). The in situ electrochemical impedance spectroscopy indicated that the Sn-doped In2S3 coating can accelerate charge-transfer kinetics and facilitate the diffusion of Na+. Furthermore, theoretical calculation revealed that doping of Sn into In2S3 can reduce the energy band gap, thus accelerating the electron transfer and promoting the electrochemical conversion of active species. It is demonstrated that adjusting the electronic structure is a reliable method to improve the electrocatalytic effect of catalyst and significantly improve the performance of S cathode in RT Na-S batteries.

9.
Nanotechnology ; 34(22)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36857776

ABSTRACT

Oxygen evolution reaction (OER) is a necessary procedure in various devices including water splitting and rechargeable metal-air batteries but required a higher potential to improve oxygen evolution efficiency due to its slow reaction kinetics. In order to solve this problem, a heterostructured electrocatalyst (Co3O4@FeOx/CC) is synthesized by deposition of iron oxides (FeOx) on carbon cloth (CC) via plasma-enhanced atomic layer deposition, then growth of the cobalt oxide (Co3O4) nanosheet arrays. The deposition cycle of FeOxon the CC strongly influences thein situgrowth and distribution of Co3O4nanosheets and electronic conductivity of the electrocatalyst. Owing to the high accessible and electroactive areas and improved electrical conductivity, the free-standing electrode of Co3O4@FeOx/CC with 100 deposition cycles of FeOxexhibits excellent electrocatalytic performance for OER with a low overpotential of 314.0 mV at 10 mA cm-2and a small Tafel slope of 29.2 mV dec-1in alkaline solution, which is much better than that of Co3O4/CC (448 mV), and even commercial RuO2(380 mV). This design and optimization strategy shows a promising way to synthesize ideally designed catalytic architectures for application in energy storage and conversion.

10.
ACS Appl Mater Interfaces ; 15(12): 16266-16276, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36918536

ABSTRACT

Negatively charged surfaces and readily oxidizabile characteristics fundamentally restrict the use of MXene building blocks as anodes for anion intercalation. Herein, by embedding bacterial cellulose nanofibers with conformal polypyrrole coating (BC@PPy) and populating them between MXene (Ti3C2Tx) interlayers, we enable the fabricated MXene/BC@PPy (MBP) composite films to be highly efficient anodes for Cl--capturing in asymmetric capacitive deionization (CDI) systems. Performance gains are realized due to the surface electronegativity of MXene nanosheets becoming compensated by positively charged BC@PPy nanofibers, alleviating electrostatic repulsion, thus realizing reversible Cl- intercalation. More crucially, the anodization voltage of MBP is effectively enhanced as a result of the increase of the Ti valence state in MXene nanosheets with the addition of the BC@PPy spacer. Furthermore, BC@PPy nanopillars effectively enlarge the interlayer space for facile Cl- de-/intercalation, improve the vertical electron transfer between loosely deposited MXene nanosheets, and perform as additional active materials for Cl--capturing. Consequently, the MBP anode exhibits a promising desalination capacity of up to 17.56 mg g-1 at 1.2 V with a high capacity retention of 94.6% after 30 cycles in an asymmetric CDI system. This work offers a simple and effective strategy to unlock the application potential of MXene building blocks as anodes for Cl--capturing in electrochemical desalination.

11.
Nanomicro Lett ; 15(1): 48, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36773092

ABSTRACT

Rechargeable zinc-air batteries (ZABs) are a promising energy conversion device, which rely critically on electrocatalysts to accelerate their rate-determining reactions such as oxygen reduction (ORR) and oxygen evolution reactions (OER). Herein, we fabricate a range of bifunctional M-N-C (metal-nitrogen-carbon) catalysts containing M-Nx coordination sites and M/MxC nanoparticles (M = Co, Fe, and Cu) using a new class of γ-cyclodextrin (CD) based metal-organic framework as the precursor. With the two types of active sites interacting with each other in the catalysts, the obtained Fe@C-FeNC and Co@C-CoNC display superior alkaline ORR activity in terms of low half-wave (E1/2) potential (~ 0.917 and 0.906 V, respectively), which are higher than Cu@C-CuNC (~ 0.829 V) and the commercial Pt/C (~ 0.861 V). As a bifunctional electrocatalyst, the Co@C-CoNC exhibits the best performance, showing a bifunctional ORR/OER overpotential (ΔE) of ~ 0.732 V, which is much lower than that of Fe@C-FeNC (~ 0.831 V) and Cu@C-CuNC (~ 1.411 V), as well as most of the robust bifunctional electrocatalysts reported to date. Synchrotron X-ray absorption spectroscopy and density functional theory simulations reveal that the strong electronic correlation between metallic Co nanoparticles and the atomic Co-N4 sites in the Co@C-CoNC catalyst can increase the d-electron density near the Fermi level and thus effectively optimize the adsorption/desorption of intermediates in ORR/OER, resulting in an enhanced bifunctional electrocatalytic performance. The Co@C-CoNC-based rechargeable ZAB exhibited a maximum power density of 162.80 mW cm-2 at 270.30 mA cm-2, higher than the combination of commercial Pt/C + RuO2 (~ 158.90 mW cm-2 at 265.80 mA cm-2) catalysts. During the galvanostatic discharge at 10 mA cm-2, the ZAB delivered an almost stable discharge voltage of 1.2 V for ~ 140 h, signifying the virtue of excellent bifunctional ORR/OER electrocatalytic activity.

12.
Nanoscale ; 15(5): 2435, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36656034

ABSTRACT

Correction for 'Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode' by Zhisen Zeng et al., Nanoscale, 2021, 13, 12223-12232, https://doi.org/10.1039/d1nr02620h.

13.
Nano Lett ; 22(23): 9559-9565, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36449467

ABSTRACT

The broad application of silicon-based materials is limited by large volume fluctuation, high preparation costs, and complicated preparation processes. Here, we synthesized SiOxCy microspheres on 3D copper foams by a simple chemical vapor deposition method using a low-cost silane coupling agent (KH560) as precursors. The SiOxCy microspheres are available with a large mass loading (>3 mg/cm2) on collectors and can be directly used as the electrode without any binders or extra conductive agents. As a result, the as-prepared SiOxCy shows a high reversible capacity of ∼1240 mAh g-1 and can be cycled more than 1900 times without decay. Ex situ characterizations show that the volume change of the microspheres is only 55% and the spherical morphology as well as the 3D structure remain intact after cycles. Full-cell electrochemical tests paired with LiFePO4 as cathodes show 87% capacity retention after 500 cycles, better than most reported results, thus showing the commercial potential of the material.

14.
Adv Sci (Weinh) ; 9(30): e2203189, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36026564

ABSTRACT

Copper ions (Cu2+ ) disposed to the environment at massive scale pose severe threat to human health and waste of resource. Electrochemical deionization (EDI) which captures ions by electrical field is a promising technique for water purification. However, the removal capacity and selectivity toward Cu2+ are unsatisfying, yet the recycling of the captured copper in EDI systems is yet to be explored. Herein, an efficient electrochemical copper pump (ECP) that can deliver Cu2+ from dilute brackish water into much more concentrated solutions is constructed using carbon nanosheets for the first time, which works based on reversible electrosorption and electrodeposition. The trade-off between the removal capacity and reversibility is mediated by the operation voltage. The ECP exhibits a removal capacity of 702.5 mg g-1 toward Cu2+ and a high selectivity coefficient of 64 for Cu2+ /Na+ in the presence of multiple cations; both are the highest reported to date. The energy consumption of 1.79 Wh g-1 is among the lowest for EDI of copper. More importantly, the Cu species captured can be released into a 20-fold higher concentrated solution. Such a high performance is attributed to the optimal potential distribution between the two electrodes that allows reversible electrodeposition and efficient electrosorption.


Subject(s)
Copper , Water Purification , Humans , Water Purification/methods , Saline Waters , Carbon , Ions
15.
Nanotechnology ; 33(8)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34781279

ABSTRACT

Taking advantage of both Faradaic and carbonaceous materials is an efficient way to synthesize composite electrodes with enhanced performance for supercapacitors. In this study, NiCo2S4nanoflakes were grown on the surface of nitrogen-doped hollow carbon nanospheres (NHCSs), forming a NiCo2S4/NHCS composite with a core-shell structure. This three-dimensionally confined growth of NiCo2S4can effectively inhibit its aggregation and facilitate mass transport and charge transfer. Accordingly, the NiCo2S4/NHCS composite exhibited high cycling stability with only 9.2% capacitance fading after 10 000 cycles, outstanding specific capacitance of 902 F g-1at 1 A g-1, and it retained 90.6% of the capacitance at 20 A g-1. Moreover, an asymmetric supercapacitor composed of NiCo2S4/NHCS and activated carbon electrodes delivered remarkable energy density (31.25 Wh kg-1at 750 W kg-1), excellent power density (15003 W kg-1at 21.88 Wh kg-1), and satisfactory cycling stability (13.4% capacitance fading after 5000 cycles). The outstanding overall performance is attributed to the synergistic effect of the NiCo2S4shell and NHSC core, which endows the composite with a stable structure, high electrical conductivity, abundant active reaction sites, and short ion-transport pathways. The synthesized NiCo2S4/NHCS composite is a competitive candidate for the electrodes of high-performance supercapacitors.

16.
Nanoscale ; 13(28): 12223-12232, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34240091

ABSTRACT

Aqueous Zn-ion batteries with economical ZnSO4 solution as the electrolyte suffer from a tremendous tendency of dendrite formation under mildly acidic conditions; moreover, utilization of Zn(CF3SO3)2 delivers superior performance, but is expensive. Herein, we optimize the ZnSO4 electrolyte by inducing 50 µL of 10 M sulfuric acid in 10 mL electrolyte, which can achieve long cycle life (1000 h at 0.1 mA cm-2, 300 h at 1 mA cm-2 and 250 h at 10 mA cm-2) when the Zn foil is protected by three metallic oxides deposited by atomic layer deposition (ALD). The nucleation behaviour of the (002) facet has proved to play a critical role in the reversible lifespan. The Al2O3 layer would restrict the stripping procedure, leading to the highest overpotential, while the TiO2 layer and Fe2O3 layer tended to strip all orientations but the (002) facet. Al2O3@Zn demonstrated a preference for a compact hillock-like (101) orientation texture in the deposition procedure, while TiO2@Zn and Fe2O3@Zn were favourable to obtain a smooth terrace texture. Additionally, symmetric cells with Fe2O3@Zn expressed the lowest overpotential (31.64 mV) and minimal voltage hysteresis (23.6 mV) at 1 mA cm-2. A Zn-MnO2 battery with Fe2O3@Zn also displayed superior capacity, which could reach 280 mA h g-1 at a current density of 1 A g-1. The diffusion coefficient of Zn2+ discloses that among the three ALD layers, full cells with Fe2O3@Zn are the most favourable for diffusion of Zn2+ in acidic electrolyte.

17.
ACS Appl Mater Interfaces ; 13(23): 26861-26869, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34080412

ABSTRACT

Membrane distillation (MD) is an emerging membrane-based evaporation technology with great promise for the desalination and separation industries. However, its widespread application still depends on substantial development to increase the distillation flux, reduce the energy consumption, and extend the lifespan of the membrane. Herein, we report for the first time the integration of multiple functions, that is, energy-saving, flux-enhancing, and anti-fouling properties, into a single membrane. Such a membrane was fabricated by coating the top surface of a poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) nanofibrous mat with photothermal and hydrophobic graphitic carbon spheres and subsequently coating the bottom surface with a hydrophilic polydopamine layer, yielding a novel Janus photothermal membrane (JPTM). Owing to the high photothermal efficiency and accelerated mass transport across the membrane, the JPTM demonstrated an excellent desalination performance when assembled into a solar-driven MD system, with a distillation flux of 1.29 kg m-2 h-1, which is 10 times higher than that of the conventional un-modified PVDF-HFP membrane, requiring only 1 kW m-2 solar illumination as the energy input.

18.
Molecules ; 25(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235598

ABSTRACT

Room temperature sodium-sulfur batteries have been considered to be potential candidates for future energy storage devices because of their low cost, abundance, and high performance. The sluggish sulfur reaction and the "shuttle effect" are among the main problems that hinder the commercial utilization of room temperature sodium-sulfur batteries. In this study, the performance of a hybrid that was based on nitrogen (N)-doped carbon nanospheres loaded with a meagre amount of Fe ions (0.14 at.%) was investigated in the sodium-sulfur battery. The Fe ions accelerated the conversion of polysulfides and provided a stronger interaction with soluble polysulfides. The Fe-carbon nanospheres hybrid delivered a reversible capacity of 359 mAh·g-1 at a current density of 0.1 A·g-1 and retained a capacity of 180 mAh·g-1 at 1 A·g-1, after 200 cycles. These results, combined with the excellent rate performance, suggest that Fe ions, even at low loading, are able to improve the electrocatalytic effect of carbon nanostructures significantly. In addition to Na-S batteries, the new hybrid is anticipated to be a strong candidate for other energy storage and conversion applications such as other metal-sulfur batteries and metal-air batteries.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Iron/chemistry , Nanospheres/chemistry , Nitrogen/chemistry , Sodium/chemistry , Sulfur/chemistry , Catalysis
19.
ChemSusChem ; 13(6): 1275-1295, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32061148

ABSTRACT

In the past decade, the rapid development of portable electronic devices, electric vehicles, and electrical devices has stimulated extensive interest in fundamental research and the commercialization of electrochemical energy-storage systems. Biomass-derived carbon has garnered significant research attention as an efficient, inexpensive, and eco-friendly active material for energy-storage systems. Therefore, high-performance carbonaceous materials, derived from renewable sources, have been utilized as electrode materials in sodium-ion batteries and sodium-ion capacitors. Herein, the charge-storage mechanism and utilization of biomass-derived carbon for sodium storage in batteries and capacitors are summarized. In particular, the structure-performance relationship of biomass-derived carbon for sodium storage in the form of batteries and capacitors is discussed. Despite the fact that further research is required to optimize the process and application of biomass-derived carbon in energy-storage devices, the current review demonstrates the potential of carbonaceous materials for next-generation sodium-related energy-storage applications.

20.
Small ; 16(5): e1905620, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31943735

ABSTRACT

The application and development of lithium metal battery are severely restricted by the uncontrolled growth of lithium dendrite and poor cycle stability. Uniform lithium deposition is the core to solve these problems, but it is difficult to be achieved on commercial Cu collectors. In this work, a simple and commercially viable strategy is utilized for large-scale preparation of a modified planar Cu collector with lithiophilic Ag nanoparticles by a simple substitution reaction. As a result, the Li metal shows a cobblestone-like morphology with similar size and uniform distribution rather than Li dendrites. Interestingly, a high-quality solid electrolyte interphase layer in egg shell-like morphology with fast ion diffusion channels is formed on the interface of the collector, exhibiting good stability with long-term cycles. Moreover, at the current density of 1 mA cm-2 for 1 mAh cm-2 , the Ag modified planar Cu collector shows an ultralow nucleation overpotential (close to 0 mV) and a stable coulombic efficiency of 98.54% for more than 600 cycles as well as long lifespan beyond 900 h in a Li|Cu-Ag@Li cell, indicating the ability of this method to realize stable Li metal batteries. Finally, full cells paired with LiNi0.8 Co0.1 Mn0.1 O2 show superior rate performance and stability compared with those paired with Li foil.

SELECTION OF CITATIONS
SEARCH DETAIL