Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 148: 108256, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36081272

ABSTRACT

MicroRNA-21 (miRNA-21) is a common biomarker with high expression in breast tumors. Therefore, sensitive detection of miRNA-21 is of great significance for clinical breast tumor diagnosis. A TH/rGO/CMK-3/AuNPs nanocomposite is composed of thionine (TH), reduced graphene oxide (rGO), ordered mesoporous carbon (CMK-3), and gold nanoparticles (AuNPs), which help to increase the specific surface area of a glassy carbon electrode (GCE) and to amplify the DPV signal. Meanwhile, methylene blue (MB) was combined with the capture probe guanine and absorbed by the composite material to mediate the differential pulse voltammetry (DPV) of the obtained miRNA biosensor. The current response decreased with increasing miRNA-21 concentration under optimal conditions. The biosensor responds to miRNA-21 in the 0.1fM-1 pM concentration range, and the detection limit (LOD) was 0.046 fM. Moreover, human serum samples were effectively detected utilizing the miRNA-21 biosensor with satisfactory results.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , MicroRNAs , Nanocomposites , Biosensing Techniques/methods , Carbon , Electrochemical Techniques/methods , Gold , Guanine , Humans , Limit of Detection , Methylene Blue
2.
Biosens Bioelectron ; 216: 114620, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36001931

ABSTRACT

Due to the low autofluorescence and deep-photo penetration, the second near-infrared region fluorescence imaging technology (NIR-II, 1000-2000 nm) has been widely utilized in basic scientific research and preclinical practice throughout the past decade. The most attractive candidates for clinical translation are organic NIR-II fluorophores with a small-molecule framework, owing to their low toxicity, high synthetic repeatability, and simplicity of chemical modification. In order to enhance the translation of small molecule applications in NIR-II bioimaging, NIR-II fluorescence imaging technology has evolved from its usage in cells to the diagnosis of diseases in large animals and even humans. Although several examples of NIR-II fluorescence imaging have been used in preclinical studies, there are still many challenges that need to be addressed before they can finally be used in clinical settings. In this paper, we reviewed the evolution of the chemical structures and photophysical properties of small-molecule fluorophores, with an emphasis on their biomedical applications ranging from small animals to humans. We also explored the potential of small-molecule fluorophores.


Subject(s)
Biosensing Techniques , Animals , Fluorescent Dyes/chemistry , Humans , Ionophores , Optical Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...