Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 161(5): 523-537, 2021 05.
Article in English | MEDLINE | ID: mdl-33730690

ABSTRACT

Long ncRNAs regulate a complex array of fundamental biological processes, while its molecular regulatory mechanism in Leydig cells (LCs) remains unclear. In the present study, we established the lncRNA LOC102176306/miR-1197-3p/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) regulatory network by bioinformatic prediction, and investigated its roles in goat LCs. We found that lncRNA LOC102176306 could efficiently bind to miR-1197-3p and regulate PPARGC1A expression in goat LCs. Downregulation of lncRNA LOC102176306 significantly supressed testosterone (T) synthesis and ATP production, decreased the activities of antioxidant enzymes and mitochondrial complex I and complex III, caused the loss of mitochondrial membrane potential, and inhibited the proliferation of goat LCs by decreasing PPARGC1A expression, while these effects could be restored by miR-1197-3p inhibitor treatment. In addition, miR-1197-3p mimics treatment significantly alleviated the positive effects of lncRNA LOC102176306 overexpression on T and ATP production, antioxidant capacity and proliferation of goat LCs. Taken together, lncRNA LOC102176306 functioned as a sponge for miR-1197-3p to maintain PPARGC1A expression, thereby affecting the steroidogenesis, cell proliferation and oxidative stress of goat LCs. These findings extend our understanding of the molecular mechanisms of T synthesis, cell proliferation and oxidative stress of LCs.


Subject(s)
Leydig Cells/cytology , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Long Noncoding/genetics , Testis/cytology , Animals , Apoptosis , Cell Proliferation , Goats , Leydig Cells/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Testis/metabolism , Testosterone/metabolism
2.
Mol Reprod Dev ; 86(11): 1758-1770, 2019 11.
Article in English | MEDLINE | ID: mdl-31535418

ABSTRACT

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) is a central regulator of mitochondrial biogenesis and metabolism, and its expression is closely related to embryo development. To gain insights into the possible mechanisms of PPARGC1A during early embryogenesis, the development potential, mitochondrial biogenesis, and the culture medium metabolomics of embryos were evaluated when PPARGC1A overexpressed or suppressed in rabbit zygotes. Results showed that different PPARGC1A levels in rabbit zygotes could affect blastocyst percentage, and the expressions of mitochondrial biogenesis and metabolic-related genes, as well as the glutathione and adenosine triphosphate levels during early embryo development. In addition, compared with the controls, 12 and 10 different metabolites involved in carbohydrate, amino acid, and fatty acid metabolism were screened in the 5 day's spent culture medium of PPARGC1A overexpressed and suppressed embryos by gas chromatography-mass spectrometer, respectively. Consistent with these metabolite changes, the transcriptions of genes encoding glucose transporters and fatty acid biosynthetic proteins in the embryos from different groups were regulated by PPARGC1A during rabbit embryo development. Taken together, these data provide evidence that PPARGC1A may regulate early rabbit embryo development through mitochondrial biogenesis and metabolism.


Subject(s)
Blastocyst/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis , Zygote/metabolism , Animals , Blastocyst/cytology , Female , Rabbits , Zygote/cytology
3.
Reproduction ; 154(2): 111-122, 2017 08.
Article in English | MEDLINE | ID: mdl-28624767

ABSTRACT

During goat follicular development, abnormal expression of nuclear respiratory factor 1 (NRF1) in granulosa cells may drive follicular atresia with unknown regulatory mechanisms. In this study, we investigated the effects of NRF1 on steroidogenesis and cell apoptosis by overexpressing or silencing it in goat luteinized granulosa cells (LGCs). Results showed that knockdown of NRF1 expression significantly inhibited the expression of STAR and CYP19A1, which are involved in sex steroid hormones synthesis, and led to lower estrogen levels. Knockdown of NRF1 resulted in an increased percentage of apoptosis, probably due to the release of cytochrome c from mitochondria, accompanied by upregulating mRNA and protein levels of apoptosis-related markers BAX, caspase 3 and caspase 9. These data indicate that NRF1 might be related with steroidogenesis and cell apoptosis. Furthermore, NRF1 silence reduced mitochondrial transcription factor A (TFAM) transcription activity, mtDNA copy number and ATP level. Simultaneously, knockdown of NRF1 suppressed the transcription and translation levels of SOD, GPx and CAT, decreased glutathione level and increased 8-OHdG level. However, the overexpression of NRF1 in LGCs or gain of TFAM in NRF1 silenced LGCs increased the expression of genes involved in mitochondrial function and biogenesis, and elevated the antioxidant stress system and steroids synthesis. Taken together, aberrant expression of NRF1 could induce mitochondrial dysfunction and disturb the cellular redox balance, which lead to disturbance of steroid hormone synthesis, and trigger LGC apoptosis through the mitochondria-dependent pathway. These findings will be helpful for understanding the role of NRF1 in goat ovarian follicular development and atresia.


Subject(s)
Apoptosis , Estradiol/biosynthesis , Luteal Cells/metabolism , Nuclear Respiratory Factor 1/metabolism , Progesterone/biosynthesis , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Aromatase/genetics , Aromatase/metabolism , Cell Survival , Cells, Cultured , Estrous Cycle/genetics , Estrous Cycle/metabolism , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Goats , Luteal Cells/pathology , Mitochondria/metabolism , Mitochondria/pathology , Nuclear Respiratory Factor 1/genetics , Oxidation-Reduction , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Interference , Signal Transduction , Transfection
4.
J Bioenerg Biomembr ; 48(5): 493-507, 2016 10.
Article in English | MEDLINE | ID: mdl-27896503

ABSTRACT

During goat follicular development, abnormal expression of peroxisome proliferator- activated receptor gamma coactivator-1 alpha (PGC-1α) in granulosa cells (GCs) may contribute to follicular atresia with unknown regulatory mechanisms. In this study, we investigate the effect of ectopic expression or interference of PGC-1α on cell apoptosis of goat first passage granulosa cells (FGCs) in vitro. The results indicate that PGC-1α silencing by short hairpin RNA (shRNA) in goat FGCs significantly reduced mitochondrial DNA (mtDNA) copy number (P < 0.05), changed mitochondria ultrastructure, and induced cell apoptosis (P < 0.05). The transcription and translation levels of the apoptosis-related genes BCL-2-associated X protein (BAX), caspase 3, and caspase 9 were significantly up-regulated (P < 0.05, respectively). Moreover, the ratio of BAX/B-cell lymphoma 2 (BCL-2) was reduced (P < 0.05), and the release of cytochrome c (cyt c) and lactate dehydrogenase (LDH) was significantly enhanced (P < 0.05, respectively) in PGC-1α interference goat FGCs. Furthermore, the expression of anti-oxidative related genes superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx) and catalase (CAT) was down-regulated (P < 0.05, respectively) and the activity of glutathione/glutathione disulfide (GSH/GSSG) was inhibited (P < 0.05). While enforced expression of PGC-1α increased the levels of genes involved in the regulation of mitochondrial function and biogenesis, and enhanced the anti-oxidative and anti-apoptosis capacity. Taken together, our results reveal that lack of PGC-1α may lead to mitochondrial dysfunction and disrupt the cellular redox balance, thus resulting in goat GCs apoptosis through the mitochondria-dependent apoptotic pathway.


Subject(s)
Apoptosis/drug effects , Granulosa Cells/pathology , Luteinization , Mitochondria/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/pharmacology , Animals , Cells, Cultured , Female , Gene Expression , Gene Silencing , Goats , Mitochondria/genetics , Mitochondria/ultrastructure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...