Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 26(11): 1602-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24019215

ABSTRACT

Although MRI offers highly diagnostic medical imagery, patient access to this modality worldwide is very limited when compared with X-ray or ultrasound. One reason for this is the expense and complexity of the equipment used to generate the switched magnetic fields necessary for MRI encoding. These field gradients are also responsible for intense acoustic noise and have the potential to induce nerve stimulation. We present results with a new MRI encoding principle which operates entirely without the use of conventional B0 field gradients. This new approach--'Transmit Array Spatial Encoding' (TRASE)--uses only the resonant radiofrequency (RF) field to produce Fourier spatial encoding equivalent to conventional MRI. k-space traversal (image encoding) is achieved by spin refocusing with phase gradient transmit fields in spin echo trains. A transmit coil array, driven by just a single transmitter channel, was constructed to produce four phase gradient fields, which allows the encoding of two orthogonal spatial axes. High-resolution two-dimensional-encoded in vivo MR images of hand and wrist were obtained at 0.2 T. TRASE exploits RF field phase gradients, and offers the possibility of very low-cost diagnostics and novel experiments exploiting unique capabilities, such as imaging without disturbance of the main B0 magnetic field. Lower field imaging (<1 T) and micro-imaging are favorable application domains as, in both cases, it is technically easier to achieve the short RF pulses desirable for long echo trains, and also to limit RF power deposition. As TRASE is simply an alternative mechanism (and technology) of moving through k space, there are many close analogies between it and conventional B0 -encoded techniques. TRASE is compatible with both B0 gradient encoding and parallel imaging, and so hybrid sequences containing all three spatial encoding approaches are possible.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Humans , Imaging, Three-Dimensional , Pulse , Time Factors
2.
Magn Reson Imaging ; 31(6): 891-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23598062

ABSTRACT

PURPOSE: TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume. MATERIALS AND METHODS: A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements. RESULTS: Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved. CONCLUSION: The Maxwell (sine)-Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs.


Subject(s)
Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
3.
PLoS One ; 7(11): e48714, 2012.
Article in English | MEDLINE | ID: mdl-23144939

ABSTRACT

Open-bore MRI scanners allow joint soft tissue to be imaged over a large, uninterrupted range of flexion. Using an open-bore scanner, 3D para-sagittal images of the posterior cruciate ligament (PCL) were collected from seven healthy subjects in unloaded, recumbent knee extension and flexion. PCL length was measured from one 2D MRI slice partition per flexion angle, per subject. The anterior surface of the PCL lengthened significantly between extension and flexion (p<0.001). Conversely, the posterior surface did not. Changes were not due to the PCL moving relative to the 2D slice partition; measurements made from 3D reconstructions, which compensated for PCL movement, did not differ significantly from measurements made from 2D slice partitions. In a second experiment, videos of knee flexion were made by imaging two subjects at several flexion angles. Videos allowed soft tissue tracking; examples are included. In a third experiment, unloaded knees of seven healthy, recumbent subjects were imaged at extension and at 40°, 70°, 90°, 100°, 110° and 120° flexion. The distance between PCL attachments increased between extension and 100°, and then decreased (p<0.001). The anterior surface of the PCL lengthened over the flexion angles measured (p<0.01). The posterior surface of the PCL lengthened between extension and 40° and then shortened (p<0.001). Both attachment separation and anterior surface length increased dramatically between extension and 40°, but varied less afterwards. Results indicate that PCL dynamics differ between terminal extension and active function sub-arcs. Also, attachment separation cannot predict the lengthening of all parts of the PCL, nor can lengthening of one part of the PCL predict the lengthening of another part. A potential connection between lengthening and loading is discussed. We conclude that low-field MRI can assess ligament lengthening during flexion, and that the dynamics of the PCL for any given region and sub-arc should be measured directly.


Subject(s)
Magnetic Resonance Imaging/methods , Posterior Cruciate Ligament/physiology , Adult , Biomechanical Phenomena , Female , Humans , Knee/anatomy & histology , Knee/physiology , Knee Joint/anatomy & histology , Knee Joint/physiology , Posterior Cruciate Ligament/anatomy & histology , Video Recording
4.
Rev Sci Instrum ; 80(9): 093709, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19791946

ABSTRACT

We present the design of an integrated system for performing both real and virtual (simulated) magnetic resonance imaging (MRI) experiments. We emphasize the approaches used to maximize the level of integration and also the benefits that tight real-virtual integration brings for a scientific instrument. The system has been implemented for both low field (0.2 T) and high field (9.4 T) imaging systems. The simulations can run for any MRI experiment and we demonstrate the operation of the system for T(1), T(2), T(2) ( *), and diffusion contrasts.


Subject(s)
Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , User-Computer Interface , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...