Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Discov ; 10(1): 93, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388451

ABSTRACT

Parkinson's disease (PD) is characterized by the formation of Lewy body in dopaminergic neurons in the substantia nigra pars compacta (SNpc). Alpha-synuclein (α-syn) is a major component of Lewy body. Autophagy eliminates damaged organelles and abnormal aggregated proteins. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays roles in protecting dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the relationship between Trx-1 and α-syn in PD is still unknown. In the present study, the movement disorder and dopaminergic neurotoxicity in MPTP-treated mice were improved by Trx-1 overexpression and were aggravated by Trx-1 knockdown in the SNpc in mice. The expression of α-syn was increased in the SNpc of MPTP-treated mice, which was inhibited by Trx-1 overexpression and was exacerbated in Trx-1 knockdown mice. Autophagosomes was increased under electron microscope after MPTP treatment, which were recovered in Trx-1 overexpressing mice and were further increased in Trx-1 knockdown in the SNpc in mice. The expressions of phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced putative kinase 1 (PINK1), Parkin, LC3 II and p62 were increased by MPTP, which were blocked in Trx-1 overexpressing mice and were further increased in Trx-1 knockdown mice. Cathepsin D was decreased by MPTP, which was restored in Trx-1 overexpressing mice and was further decreased in Trx-1 knockdown mice. The mRFP-GFP-LC3 green fluorescent dots were increased by 1-methyl-4-phenylpyridinium (MPP+) and further increased in Trx-1 siRNA transfected PC12 cells, while mRFP-GFP-LC3 red fluorescent dots were increased in Trx-1 overexpressing cells. These results indicate that Trx-1 may eliminate α-syn in PD mice through potentiating autophagy-lysosome pathway.

2.
Biomaterials ; 305: 122466, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184960

ABSTRACT

Inflammation is associated with a series of diseases like cancer, cardiovascular disease and infection, and phosphorylation/dephosphorylation modification of proteins are important in inflammation regulation. Here we designed and synthesized a novel Brazilin-Ce nanoparticle (BX-Ce NPs) using Brazilin, which has been used for anti-inflammation in cardiovascular diseases but with narrow therapeutic window, and Cerium (IV), a lanthanide which has the general activity in catalyzing the hydrolysis of phosphoester bonds, to conferring de/anti-phosphorylation of IKKß. We found that BX-Ce NPs specifically bound to Asn225 and Lys428 of IKKß and inhibited its phosphorylation at Ser181, contributing to appreciably anti-inflammatory effect in cellulo (IC50 = 2.5 µM). In vivo mouse models of myocardial infarction and sepsis also showed that the BX-Ce NPs significantly ameliorated myocardial injury and improved survival in mice with experimental sepsis through downregulating phosphorylation of IKKß. These findings provided insights for developing metal nanoparticles for guided ion interfere therapy, particularly synergistically target de/anti-phosphorylation as promising therapeutic agents for inflammation and related diseases.


Subject(s)
Benzopyrans , Cerium , Metal Nanoparticles , Nanoparticles , Sepsis , Mice , Animals , Phosphorylation , I-kappa B Kinase/metabolism , I-kappa B Kinase/therapeutic use , Inflammation/drug therapy , Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Cerium/chemistry
3.
Cell Rep ; 42(10): 113174, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37751357

ABSTRACT

The immune system plays a critical role during myocardial injury, contributing to repair and remodeling post myocardial infarction (MI). The myocardial infarct and border zone exhibit high heterogeneity, in turn leading to reconstructing macrophage subsets and specific functions. Here we use a combination of single-cell RNA sequencing, spatial transcriptomes, and reporter mice to characterize temporal-spatial dynamics of cardiac macrophage subtype in response to MI. We identify that transient appearance of monocyte-derived Bhlhe41+ Mφs in the "developing" infarct zone peaked at day 7, while other monocyte-derived macrophages are identified in "old" infarct zone. Functional characterization by co-culture of Bhlhe41+ Mφs with cardiomyocytes and fibroblasts or depletion of Bhlhe41+ Mφs unveils a crucial contribution of Bhlhe41+ Mφs in suppression of myofibroblast activation. This work highlights the importance of Bhlhe41+ Mφ phenotype and plasticity in preventing excessive fibrosis and limiting the expansion of developing infarct area.


Subject(s)
Myocardial Infarction , Myocardium , Mice , Animals , Macrophages , Myocardial Infarction/genetics , Heart , Monocytes , Mice, Inbred C57BL
4.
Phytomedicine ; 113: 154743, 2023 May.
Article in English | MEDLINE | ID: mdl-36893672

ABSTRACT

BACKGROUND: Pyroptosis is an inflammatory form of cell death that has been implicated in various infectious and non-infectious diseases. Gasdermin family proteins are the key executors of pyroptotic cell death, thus they are considered as novel therapeutic targets for inflammatory diseases. However, only limited gasdermin specific inhibitors have been identified to date. Traditional Chinese medicines have been applied in clinic for centuries and exhibit potential in anti-inflammation and anti-pyroptosis. We attempted to find candidate Chinese botanical drugs which specifically target gasdermin D (GSDMD) and inhibit pyroptosis. METHODS: In this study, we performed high-throughput screening using a botanical drug library to identify pyroptosis specific inhibitors. The assay was based on a cell pyroptosis model induced by lipopolysaccharides (LPS) and nigericin. Cell pyroptosis levels were then evaluated by cell cytotoxicity assay, propidium iodide (PI) staining and immunoblotting. We then overexpressed GSDMD-N in cell lines to investigate the direct inhibitory effect of the drug to GSDMD-N oligomerization. Mass spectrometry studies were applied to identify the active components of the botanical drug. Finally, a mouse model of sepsis and a mouse model of diabetic myocardial infarction were constructed to verify the protective effect of the drug in disease models of inflammation. RESULTS: High-throughput screening identified Danhong injection (DHI) as a pyroptosis inhibitor. DHI remarkably inhibited pyroptotic cell death in a murine macrophage cell line and bone marrow-derived macrophages. Molecular assays demonstrated the direct blockade of GSDMD-N oligomerization and pore formation by DHI. Mass spectrometry studies identified the major active components of DHI, and further activity assays revealed salvianolic acid E (SAE) as the most potent molecule among these components, and SAE has a strong binding affinity to mouse GSDMD Cys192. We further demonstrated the protective effects of DHI in mouse sepsis and mouse myocardial infarction with type 2 diabetes. CONCLUSION: These findings provide new insights for drug development from Chinese herbal medicine like DHI against diabetic myocardial injury and sepsis through blocking GSDMD-mediated macrophage pyroptosis.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Myocardial Infarction , Sepsis , Mice , Animals , Pyroptosis , Drugs, Chinese Herbal/pharmacology , Gasdermins , Intracellular Signaling Peptides and Proteins , Sepsis/drug therapy
5.
Biomed Pharmacother ; 154: 113606, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36030589

ABSTRACT

Patients with AMI and hyperglycemia upon hospital admission exhibited poorer prognosis compared with those without hyperglycemia. It is unknown whether SGLT2 inhibitors can also improve nondiabetic myocardial infarction (MI) with acute hyperglycemia and the underlying mechanisms. Here we demonstrated that hyperglycemia patients were more likely to have worse cardiac function levels, such as with Killip III/IV during hospitalization. Glucose injection-induced nondiabetic MI accompanied by acute hyperglycemia in WT mice, manifested lower survival compared with control. A significant increase in both survival and LV function was observed when treated with empagliflozin (EMPA). In addition, EMPA attenuated fibrosis and autophagy of border cardiac tissue in mice with MI accompanied by acute hyperglycemia. Applying Beclin1+/- and NHE1 cKO mice, we found that Beclin1 deficiency improved survival. Mechanistically, EMPA had a more significant cardioprotective effect through inhibited its autophagy level by targeted Beclin1 rather than NHE1. In addition, EMPA rescued cardiomyocytes autosis induced by Tat-beclin1 or GD, conferring cardioprotection decreasing autophagic cell death. These findings provide new insights that SGLT2 inhibitor effectively ameliorates the myocardial injury in nondiabetic myocardial infarction with acute hyperglycemia through suppressing beclin1-dependent autosis rather than elusively targeting NHE1 in cardiomyocytes.


Subject(s)
Hyperglycemia , Myocardial Infarction , Sodium-Glucose Transporter 2 Inhibitors , Animals , Beclin-1 , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Glucosides/pharmacology , Hyperglycemia/complications , Hyperglycemia/drug therapy , Mice , Myocardial Infarction/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
6.
Eur J Neurosci ; 54(3): 4827-4837, 2021 08.
Article in English | MEDLINE | ID: mdl-34132424

ABSTRACT

Disturbance in calcium (Ca2+ ) homeostasis has been involved in a variety of neuropathological conditions including Parkinson's disease (PD). The Ca2+ channel, transient receptor potential channel 1 (TRPC1), plays a protective role in regulating entry of Ca2+ activated by store depletion of Ca2+ in endoplasmic reticulum (ER). We have showed that thioredoxin-1 (Trx-1) plays a role in suppressing ER stress in PD. However, whether Trx-1 regulates TRPC1 expression in PD is still unknown. In the present study, we demonstrated that treatment of 1-methyl-4-phenylpyridinum ion (MPP+ ) significantly reduced the expression of TRPC1 in PC12 cells, which was restored by Trx-1 overexpression, and further decreased significantly by Trx-1 siRNA. Moreover, we found that Ca2+ entered into the cells was decreased by MPP+ in PC 12 cells, which was restored by Trx-1 overexpression, and further decreased by Trx-1 siRNA. MPP+ significantly increased calcium-dependent cysteine protease calpain1 expression in PC12 cells, which was suppressed by Trx-1 overexpression. Calpain1 expression was increased by Trx-1 siRNA or SKF96365, an inhibitor of TRPC1. Moreover, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreased TRPC1 expression in the substantia nigra pars compacta region (SNpc), which was restored in mice overexpressing Trx-1, and further decreased in mice of knockdown Trx-1. Inversely, the expression of calpain1 was increased by MPTP, which was suppressed in mice overexpressing Trx-1, and further increased in mice of knockdown Trx-1. In conclusion, Trx-1 regulates the Ca2+ entry through regulating TRPC1 expression after treatment of MPP+ /MPTP.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Calcium , Disease Models, Animal , Homeostasis , Mice , Mice, Inbred C57BL , PC12 Cells , Rats , Thioredoxins/genetics
7.
Mol Neurobiol ; 58(7): 3187-3197, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33634378

ABSTRACT

Parkinson's disease (PD), a common neurodegenerative disease, is typically associated with the loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc). Ferroptosis is a newly identified cell death, which associated with iron accumulation, glutathione (GSH) depletion, lipid peroxidation formation, reactive oxygen species (ROS) accumulation, and glutathione peroxidase 4 (GPX4) reduction. It has been reported that ferroptosis is linked with PD.Thioredoxin-1 (Trx-1) is a redox regulating protein and plays various roles in regulating the activity of transcription factors and inhibiting apoptosis. However, whether Trx-1 plays the role in regulating ferroptosis involved in PD is still unknown. Our present study showed that 1-methyl-4-phenylpyridinium (MPP+) decreased cell viability, GPX4, and Trx-1, which were reversed by Ferrostatin-1 (Fer-1) in PC 12 cells and SH-SY5Y cells. Moreover, the decreased GPX4 and GSH, and increased ROS were inhibited by Fer-1 and Trx-1 overexpression. We further repeated that behavior deficits resulted from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were improved in Trx-1 overexpression transgenic mice. Trx-1 reversed the decreases of GPX4 and tyrosine hydroxylase (TH) induced by MPTP in the substantia nigra pars compacta (SNpc). Our results suggest that Trx-1 inhibits ferroptosis in PD through regulating GPX4 and GSH.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Ferroptosis/drug effects , MPTP Poisoning/drug therapy , MPTP Poisoning/epidemiology , Phospholipid Hydroperoxide Glutathione Peroxidase/biosynthesis , Thioredoxins/administration & dosage , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Ferroptosis/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Microinjections/methods , PC12 Cells , Rats
8.
Sci Total Environ ; 612: 442-449, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28863375

ABSTRACT

The widespread application of antibiotics poses health risks for agro-ecosystems. This study examined the effects of ciproflaxin (CIP)-polluted soils (0-51.2mgCIP/kg) on the earthworm Eisenia foetida. The enhanced activities and isozyme levels of superoxide dismutase (SOD) and ascorbate peroxidase after 15days of CIP exposure suggested reactive oxygen species overproduction and thus the generation of oxidatively damaged proteins (e.g., carbonylated proteins) in the earthworms. Under mild CIP stress, the 20S proteasome was capable of degrading most of the damaged proteins independent of ubiquitin. Under severe stress, proteases and endoproteases were up-regulated and maintained the proteolysis as 20S proteasome activity diminished. These observations suggested that, together with glutathione S-transferases, which also participated in the detoxification, 20S proteasome, proteases, endoproteases, and antioxidant enzymes constituted a detoxification and defense system in the earthworms. The biphasic dose responses of these cellular components confirmed that the dose range tested was reasonable for the bioassay of CIP-polluted soils. Our results also demonstrated the potential utility of SOD and ubiquitin as highly sensitive biomarkers in the early bioassay of CIP-polluted soils. Bases on the results, a toxicity threshold for CIP-polluted soils of 3.2-6.4mgCIP/kg soil can be proposed.


Subject(s)
Ciprofloxacin/metabolism , Oligochaeta/metabolism , Soil Pollutants/metabolism , Animals , Ascorbate Peroxidases/metabolism , Inactivation, Metabolic , Proteasome Endopeptidase Complex/metabolism , Reactive Oxygen Species/metabolism , Soil , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...