Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3763, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704386

ABSTRACT

Under long-standing threat of seasonal influenza outbreaks, it remains imperative to understand the drivers of influenza dynamics which can guide mitigation measures. While the role of absolute humidity and temperature is extensively studied, the possibility of ambient ozone (O3) as an environmental driver of influenza has received scant attention. Here, using state-level data in the USA during 2010-2015, we examined such research hypothesis. For rigorous causal inference by evidence triangulation, we applied 3 distinct methods for data analysis: Convergent Cross Mapping from state-space reconstruction theory, Peter-Clark-momentary-conditional-independence plus as graphical modeling algorithms, and regression-based Generalised Linear Model. The negative impact of ambient O3 on influenza activity at 1-week lag is consistently demonstrated by those 3 methods. With O3 commonly known as air pollutant, the novel findings here on the inhibition effect of O3 on influenza activity warrant further investigations to inform environmental management and public health protection.


Subject(s)
Air Pollutants , Influenza, Human , Ozone , Humans , Influenza, Human/epidemiology , Influenza, Human/transmission , Influenza, Human/virology , United States/epidemiology , Seasons , Disease Outbreaks , Algorithms
2.
Environ Sci Process Impacts ; 25(8): 1311-1321, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37525938

ABSTRACT

Elemental carbon (EC) and organic carbon (OC) exist ubiquitously and interact mutually in the environment. Simultaneous analysis of EC and OC will greatly advance our understanding of the behavior and fate of EC and OC, but is however still a great challenge due to the lack of suitable analytical tools. Here, we report a matrix-free laser desorption/ionization mass spectrometry (LDI-MS) method capable of simultaneous analysis of EC and OC by monitoring two independent groups of specific MS fingerprint peaks. We found that EC itself can generate carbon cluster peaks in the low mass range under laser excitation, and meanwhile it can also serve as a matrix to assist the ionization of OC in LDI-MS. By using per- and polyfluoroalkyl substances (PFASs) as a typical set of OC and carbon black (CB) as a model EC, we successfully monitored the adsorption process of PFASs on CB enabled by LDI-MS. We show that hydrophobic interaction dominates the sorption of PFASs to CB, which was affected by the functional groups and carbon chain length of PFASs. Furthermore, environmental substances in water such as humic acid (HA) and surfactants can significantly affect the adsorption of PFASs on CB probably by changing the adsorption sites of CB. Overall, we demonstrate that LDI-MS offers a versatile and high-throughput tool for simultaneous analysis of EC and OC species in real environmental samples, which makes it promising for investigating the environmental behaviors and ecological risks of pollutants.


Subject(s)
Carbon , Fluorocarbons , Mass Spectrometry , Mass Spectrometry/methods , Carbon/analysis , Soot/analysis , Environmental Monitoring , Wastewater/chemistry , Absorption , Fluorocarbons/chemistry , Environmental Pollutants/analysis
3.
Environ Int ; 170: 107607, 2022 12.
Article in English | MEDLINE | ID: mdl-36332492

ABSTRACT

Metal components in fine particulate matter (PM2.5) are closely associated with many adverse health outcomes. Dynamic changes of metals in PM2.5 are critical for risk assessment due to their temporal variations. Herein, an online method for real-time determination of multi-elements (As, Cd, Cs, Cu, Fe, Mg, Mn, Pb, Rb, Sn, Tl, and V) in PM2.5 was established by directly introducing air samples into inductively coupled plasma mass spectrometry (ICPMS). Meanwhile, a quantified method using metal standard aerosols (Cr, Mo, and W) and high time resolution for 3.3 min online measurement was developed and validated. The limits of detection were in the range of 0.001-6.30 ng/m3 for different metals. Subsequently, the real-time contents of multi-elements in PM2.5 for 12 h over 33 days were measured at different air qualities. Temporal variations of crustal elements like Fe, Mg are similar to PM2.5, whereas toxic elements (Pb, As and Cd) have upward trends at dusk. This denoted the association with various emission sources and different exposure concentrations of metals. In addition to the acquisition of real-time information, online analysis of multi-elements in PM2.5 is beneficial for atmospheric monitoring and provides critical insights into the different exposure risks of metals in PM2.5 at varying times.


Subject(s)
Cadmium
4.
Sci Total Environ ; 771: 145063, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33736171

ABSTRACT

Metal-organic frameworks (MOFs) exhibit broad potential applications in the environmental, biomedical, catalyst, and energy fields. However, the currently existing data hardly shed light on their health risks before the MOFs' large-scale usage. In this context, we exploratively investigated the in vivo fate and effect of one representative cobalt-based zeolitic imidazolate framework (ZIF-67) at the nano- (60 nm) and submicron- (890 nm) scales. Different from submicron-scale ZIF-67 showing better biosafety, nanoscale particles manifested a neurodegenerative risk at the dose of no general toxicity, evidenced by the impairment of learning and memory ability and disordered function of the neuropeptide signaling pathway in a rat model. The involvement of oxidative damage and inflammatory processes in the neurotoxicity induced by ZIF-67 was discussed as well. These findings not only provide a wake-up call for the prudent applications of MOFs but also provide insight into the better design and safer use of MOFs for broader applications.


Subject(s)
Metal-Organic Frameworks , Zeolites , Animals , Catalysis , Cobalt/toxicity , Metal-Organic Frameworks/toxicity , Rats , Zeolites/toxicity
5.
Environ Pollut ; 254(Pt A): 113020, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31421574

ABSTRACT

Increasing interest of seeking substitutable water resources accrues from shortage of freshwater. One of the options considered is reclaimed water (also designated as recycled water) that has been widely used in daily life. Although reclaimed water can serve as a feasible reliever of water pressure, attention about its technologies and potential risks is growing in the meantime. Most established wastewater treatment plants (WWTPs) predate many new contaminants, which means treatment processes cannot ensure to dislodge certain contaminants completely from origin water. Furthermore, a wide range of factors, such as seasons and influent variations, affect occurrence and concentration of reclaimed water-borne contaminants, making research about quality of reclaimed water especially significant. Many reclaimed water-borne contaminants, including biological and chemical contaminants, are toxic to human health, and complex wastewater matrix may aggravate water quality of concern. The widespread use of reclaimed water continues to be a concern on agriculture, ecological environment and human health. This study aims to: 1) provide a critical review about occurrence and profiles of diverse contaminants in the treated reclaimed water, 2) discuss the possibility to avoid the secondary pollution in reuse of reclaimed water, and 3) reveal the prospective consequences of using reclaimed water on agriculture, ecological environment and human health.


Subject(s)
Waste Disposal, Fluid , Water Pollutants/analysis , Water Purification , Agriculture , Humans , Prospective Studies , Recycling , Wastewater , Water , Water Quality , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...