Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1338889, 2024.
Article in English | MEDLINE | ID: mdl-38469144

ABSTRACT

Background: Nonalcoholic steatohepatitis (NASH) is the advanced stage of nonalcoholic fatty liver disease (NAFLD), one of the most prevalent chronic liver diseases. The effectiveness of bariatric surgery in treating NASH and preventing or even reversing liver fibrosis has been demonstrated in numerous clinical studies, but the underlying mechanisms and crucial variables remain unknown. Methods: Using the GSE135251 dataset, we examined the gene expression levels of NASH and healthy livers. Then, the differentially expressed genes (DEGs) of patients with NASH, at baseline and one year after bariatric surgery, were identified in GSE83452. We overlapped the hub genes performed by protein-protein interaction (PPI) networks and DEGs with different expression trends in both datasets to obtain key genes. Genomic enrichment analysis (GSEA) and genomic variation analysis (GSVA) were performed to search for signaling pathways of key genes. Meanwhile, key molecules that regulate the key genes are found through the construction of the ceRNA network. NASH mice were induced by a high-fat diet (HFD) and underwent sleeve gastrectomy (SG). We then cross-linked the DEGs in clinical and animal samples using quantitative polymerase chain reaction (qPCR) and validated the key genes. Results: Seven key genes (FASN, SCD, CD68, HMGCS1, SQLE, CXCL10, IGF1) with different expression trends in GSE135251 and GSE83452 were obtained with the top 30 hub genes selected by PPI. The expression of seven key genes in mice after SG was validated by qPCR. Combined with the qPCR results from NASH mice, the four genes FASN, SCD, HMGCS1, and CXCL10 are consistent with the biological analysis. The GSEA results showed that the 'cholesterol homeostasis' pathway was enriched in the FASN, SCD, HMGCS1, and SQLE high-expression groups. The high-expression groups of CD68 and CXCL10 were extremely enriched in inflammation-related pathways. The construction of the ceRNA network obtained microRNAs and ceRNAs that can regulate seven key genes expression. Conclusion: In summary, this study contributes to our understanding of the mechanisms by which bariatric surgery improves NASH, and to the development of potential biomarkers for the treatment of NASH.


Subject(s)
Bariatric Surgery , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/surgery , MicroRNAs/genetics , Protein Interaction Maps
2.
J Oral Pathol Med ; 53(2): 114-123, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38234119

ABSTRACT

BACKGROUND: Ubiquitination, small ubiquitin-related modifiers, and NEDDylation are now found to function in cancer biology; however, its role in the oral cancer patients remains unclear. METHODS: A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of ubiquitin and ubiquitin-like (UB/UBL) genes. A UB/UBL-related risk score was developed via correlation analyses, univariate Cox regression, and multivariate Cox regression. Nomogram analysis evaluates the model's prediction performance. The drug sensitivity analysis, immune profiles of UB/UBL-classified oral squamous cell carcinoma (OSCC) patients, and their related function pathway were investigated, and the role of UB/UBL-related genes in drug therapy was analyzed. RESULTS: A total of six prognostic UB/UBL-related genes were obtained. PSMD3, PCGF2, and H2BC10 were significantly downregulated in OSCC tissue and associated with longer survival time. OSCC patients in the high-risk group showed a significantly lower overall survival and enriched in cancer-related pathways. The prognostic potential of genes associated with UB/UBL was discovered, and patients with high-risk scores showed an increase of protumor immune infiltrates and a high expression of immune checkpoints. Moreover, the area under the curve of the annual survival rate was 0.616, 0.671, and 0.673, respectively. Besides, patients in the high-risk group are more sensitive to docetaxel, doxorubicin, and methotrexate therapy. CONCLUSIONS: We construct a prognosis model for OSCC patients with UB/UBL-related genes and try to find a new approach to treating oral cancer patients. The UB/UBL-related signature is helpful in developing new tumor markers, prognostic prediction, and in guiding treatment for OSCC patients.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Prognosis , Sumoylation , Mouth Neoplasms/genetics , Ubiquitination , Ubiquitin/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
3.
Front Mol Biosci ; 10: 1185832, 2023.
Article in English | MEDLINE | ID: mdl-37705968

ABSTRACT

Introduction: Oral squamous cell carcinoma (OSCC), which accounts for a high proportion of oral cancers, is characterized by high aggressiveness and rising incidence. Lysine acetylation is associated with cancer pathogenesis. Lysine acetylation-related genes (LARGs) are therapeutic targets and potential prognostic indicators in various tumors, including oral squamous cell carcinoma. However, systematic bioinformatics analysis of the Lysine acetylation-related genes in Oral squamous cell carcinoma is still unexplored. Methods: We analyzed the expression of 33 Lysine acetylation-related genes in oral squamous cell carcinoma and the effects of their somatic mutations on oral squamous cell carcinoma prognosis. Consistent clustering analysis identified two lysine acetylation patterns and the differences between the two patterns were further evaluated. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to develop a lysine acetylation-related prognostic model using TCGA oral squamous cell carcinoma datasets, which was then validated using gene expression omnibus (GEO) dataset GSE41613. Results: Patients with lower risk scores had better prognoses, in both the overall cohort and within the subgroups These patients also had "hot" immune microenvironments and were more sensitive to immunotherapy. Disscussion: Our findings offer a new model for classifying oral squamous cell carcinoma and determining its prognosis and offer novel insights into oral squamous cell carcinoma diagnosis and treatment.

4.
ACS Omega ; 8(12): 10851-10862, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008098

ABSTRACT

Cuproptosis is a newly discovered programmed cell death process, and several cuproptosis-related genes have been reported to regulate cancer cell proliferation and progression. The association between cuproptosis and tumor microenvironment in gastric cancer (GC) remains unclear. This study aimed to explore multiomics characteristics of cuproptosis-related genes regulating tumor microenvironment and provide strategies for prognosis and prediction of immunotherapy response in GC patients. We collected 1401 GC patients from the TCGA and 5 GEO data sets and identified three different cuproptosis-mediated patterns, each of which shared a distinct tumor microenvironment and different overall survival. The GC patients with high cuproptosis levels were enriched in CD8+ T cells and had a better prognosis. Whereas, the low cuproptosis level patients were associated with inhibitory immune cell infiltration and had the worst prognosis. In addition, we constructed a 3-gene (AHCYL2, ANKRD6 and FDGFRB) cuproptosis-related prognosis signature (CuPS) via Lasso-Cox and multivariate Cox regression analysis. The GC patients in the low-CuPS subgroup had higher TMB levels, MSI-H fractions, and PD-L1 expression, which suggests a better immunotherapy response. Therefore, the CuPS might have the potential value for predicting prognosis and immunotherapy sensitivity in GC patients.

5.
Front Mol Biosci ; 9: 1034928, 2022.
Article in English | MEDLINE | ID: mdl-36339715

ABSTRACT

Background: Increasing evidence illustrated that m6A regulator-mediated modification plays a crucial role in regulating tumor immune and angiogenesis microenvironment. And the combination of immune checkpoint inhibitor and anti-angiogenic therapy has been approved as new first-line therapy for advanced HCC. This study constructed a novel prognosis signature base on m6A-mediated modification and explored the related mechanism in predicting immune and anti-angiogenic responses. Methods: Gene expression profiles and clinical information were collected from TCGA and GEO. The ssGSEA, MCPCOUNT, and TIMER 2.0 algorithm was used to Estimation of immune cell infiltration. The IC50 of anti-angiogenic drugs in GDSC was calculated by the "pRRophetic" package. IMvigor210 cohort and Liu et al. cohort were used to validate the capability of immunotherapy response. Hepatocellular carcinoma single immune cells sequencing datasets GSE140228 were collected to present the expression landscapes of 5 hub genes in different sites and immune cell subpopulations of HCC patients. Results: Three m6A clusters with distinct immune and angiogenesis microenvironments were identified by consistent cluster analysis based on the expression of m6A regulators. We further constructed a 5-gene prognosis signature (termed as m6Asig-Score) which could predict both immune and anti-angiogenic responses. We illustrated that high m6Asig-Score is associated with poor prognosis, advanced TNM stage, and high TP53 mutation frequency. Besides, the m6Asig-Score was negatively associated with immune checkpoint inhibitors and anti-angiogenic drug response. We further found that two of the five m6Asig-Score inner genes, B2M and SMOX, were associated with immune cell infiltration, immune response, and the sensitivity to sorafenib, which were validated in two independent immunotherapy cohorts and the Genomics of Drug Sensitivity in Cancer (GDSC) database. Conclusion: We constructed a novel prognosis signature and identified B2M and SMOX for predicting immune and anti-angiogenic efficacy in HCC, which may guide the combined treatment strategies of immunotherapy and anti-angiogenic therapy in HCC.

6.
Front Mol Biosci ; 9: 1001788, 2022.
Article in English | MEDLINE | ID: mdl-36250008

ABSTRACT

Background: Copper metabolism plays an important role in the tumor microenvironment, and cuproptosis is the last discovered programmed cell death process. However, the potential mechanism of cuproptosis in regulating the immune microenvironment of HCC remains unclear. Methods: A total of 716 HCC patients with complete mRNA expression and survival information were collected from three public HCC cohorts (TCGA-LIHC cohort, n = 370; GSE76427 cohort, n = 115; ICGC-LIRI cohort, n = 231). The unsupervised clustering analysis (NMF) was performed to identify three different cuproptosis-related subtypes. The univariate-Cox, lasso-Cox and multivariate-Cox regression analyses were performed to screen the cuproptosis related and construct the cuproptosis-related prognosis signature (Cu-PS). The immune cell infiltration was estimated by both CIBERSORT and MCPcounter algorithms. Results: This study identified three distinct cuproptosis-related metabolic patterns, which presented different pathway enrichment and immune cell infiltration. The Cu-PS, a 5-genes (C7, MAGEA6, HK2, CYP26B1 and EPO) signature, was significantly associated with TNM stage, tumor mutational burden (TMB), drugs sensitivity, and immunotherapies response. Conclusion: This study performed a multi-genetic analysis of cuproptosis-related genes and further explored the regulatory mechanism of cuproptosis in HCC. The Cu-PS might be a useful biomarker for predicting immunotherapy response and enhancing the diagnosis and treatment of HCC.

7.
Front Surg ; 9: 898733, 2022.
Article in English | MEDLINE | ID: mdl-36090326

ABSTRACT

Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a specific molecular subtype of gastric carcinoma with a high proportion of tumor-infiltrating lymphocytes. It is a highly immunogenic tumor that may benefit from immunotherapy. Hence, it is imperative to analyze the immune landscape and identify immunotherapy biomarkers for EBVaGC. In our study, we investigated the immune landscape and identified 10 hub genes for EBVaGC via integrated bioinformatics analysis. We found that EBVaGC expressed more immune-related genes, including common immune checkpoints and human leukocyte antigen (HLA) genes than EBV-negative gastric carcinoma (EBVnGC). The immune score in EBVaGC was higher, which means EBVaGC has greater immune cell infiltration. Ten hub genes (CD4, STAT1, FCGR3A, IL10, C1QA, CXCL9, CXCL10, CXCR6, PD-L1, and CCL18) were detected as candidate biomarkers for EBVaGC. Two hub genes, CXCL9 and CXCR6, were identified as novel immunotherapy-related genes. Taken together, the results of our comprehensive analysis of the immune microenvironment of EBVaGC revealed its unique immune landscape, demonstrating that it is a highly immunogenic tumor. Moreover, we identified hub genes that may serve as potential immunotherapy biomarkers for EBVaGC.

8.
Front Immunol ; 13: 823910, 2022.
Article in English | MEDLINE | ID: mdl-35493457

ABSTRACT

Glioma is the most common primary malignant brain tumor in adults with very poor prognosis. The limited new therapeutic strategies for glioma patients can be partially attributed to the complex tumor microenvironment. However, knowledge about the glioma immune microenvironment and the associated regulatory mechanisms is still lacking. In this study, we found that, different immune subtypes have a significant impact on patient survival. Glioma patients with a high immune response subtype had a shorter survival compared with patients with a low immune response subtype. Moreover, the number of B cell, T cell, NK cell, and in particular, the macrophage in the immune microenvironment of patients with a high immune response subtype were significantly enhanced. In addition, 132 genes were found to be related to glioma immunity. The functional analysis and verification of seven core genes showed that their expression levels were significantly correlated with the prognosis of glioma patients, and the results were consistent at tissue levels. These findings indicated that the glioma immune microenvironment was significantly correlated with the prognosis of glioma patients and multiple genes were involved in regulating the progression of glioma. The identified genes could be used to stratify glioma patients based on immune subgroup analysis, which may guide their clinical treatment regimen.


Subject(s)
Brain Neoplasms , Glioma , Adult , Brain Neoplasms/pathology , Glioma/pathology , Humans , Immunophenotyping , Prognosis , Tumor Microenvironment/genetics
9.
Chin Med J (Engl) ; 133(13): 1552-1560, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32590458

ABSTRACT

Rising emissions of greenhouse gases in the atmosphere have warmed the planet substantially and are also accompanied by poor air quality. The increased prevalence of allergic airway disease worldwide can be partially attributed to those global environmental changes. Climate change and air pollution pose adverse impacts on respiratory allergies, and that the mechanisms are complex and interactive. Adverse weather conditions, such as extreme temperatures, can act directly on the respiratory tract to induce allergic respiratory illnesses. Thunderstorms and floods can alter the production and distribution of aeroallergens while wildfires and dust storms increase air pollution, and therefore indirectly enhance health risks. Concentrations of particulate matter and ozone in the air have been projected to increase with climate warming and air stagnation, and the rising temperatures and CO2 increase pollen, molds, and spores, which escalate the risk of allergic respiratory diseases. The synergistic effects of extreme heat and aeroallergens intensify the toxic effect of air pollutants, which in turn augment the allergenicity of aeroallergens. With the Earth's climate change, migration of humans and plants shift the living environments and allergens of susceptible people. Urban residents are exposed to multiple factors while children are sensitive to environmental exposure. Since climate change may pose many unexpected and persistent effects on allergic respiratory diseases, health professionals should advocate for effective mitigation and adaptation strategies to minimize its respiratory health effects.


Subject(s)
Air Pollutants , Air Pollution , Hypersensitivity , Air Pollutants/adverse effects , Air Pollution/adverse effects , Allergens , Child , Climate Change , Humans
10.
Zhonghua Nan Ke Xue ; 19(9): 771-5, 2013 Sep.
Article in Chinese | MEDLINE | ID: mdl-24386851

ABSTRACT

OBJECTIVE: To overcome the deficiency in the current therapies for erectile dysfunction (ED), we designed and synthesized a novel high-efficiency polymer/gene compound drug controlled release system and discussed the feasibility of pH and temperature dually sensitive injectable hydrogel in ED gene therapy. METHODS: We synthesized optimal siRNA gene nanoparticles by characterizing the zeta potential of polylysine (PLL)/siRNA gene compounds, and established a pH and temperature dually sensitive injectable gene compound drug controlled release system via Schiffs reaction between glycol chitosan (GC) and benzaldehyde capped OHC-PEO-PPO-PEO-CHO. Then we demonstrated the sustained release of the system at different temperatures. RESULTS: When the mass ratio of PLL to siRNA was 20:1, the zeta potential of the PLL/siRNA gene compound reached the peak (+23.5 mV) and the siRNA was encapsulated by PLL in the maximal degree. GC and OHC-PEO-PPO-PEO-CHO was crosslinked via benzoicimine reaction when environmental pH was changed from 5.5 to 7.4. The reslease of the siRNA encapsulated in this system kept at a low rate at 37 degrees C, significantly enhanced with the increase of the temperature to 60 degrees C, rising to (122.5 +/- 5.3) microg at 1 000 minutes as compared with (23.8 +/- 6.0) microg at 37 degrees C (P < 0.05). CONCLUSION: The polymer/gene compound drug controlled release system was successfully synthesized, which improved the stability and capacity of gene carriers and achieved siRNA release at different temperatures, promising to be a new approach to the gene therapy of ED.


Subject(s)
Delayed-Action Preparations/pharmacology , Drug Delivery Systems , Erectile Dysfunction/drug therapy , Genetic Therapy , Humans , Male , Nanoparticles/chemistry , Polylysine/chemistry , Polymers , RNA, Small Interfering/pharmacology
11.
Zhonghua Nan Ke Xue ; 13(7): 643-6, 2007 Jul.
Article in Chinese | MEDLINE | ID: mdl-17725312

ABSTRACT

Animal models in sexual dysfunction were reviewed to further improve the modeling methods and to promote the effectiveness of drug evaluation translation from animal models to humans. A MEDLINE search was performed to retrieve articles relating to animal models in sexual dysfunction. Researches on a variety of animal models in sexual dysfunction, with their own merits, has to a certain extent contributed to the understanding of sexual function. However, no models could give a fully accurate assessment of sexual function. The existing sexual function studies on animal models of interpretive function, the development mechanisms, the effects of drugs on sexual function and the clinical translation still have some deficiencies, but with their basic principles and ideas for the improvement of the models and the preservation of the valuable data of drugs and clinical trials.


Subject(s)
Disease Models, Animal , Sexual Dysfunction, Physiological/physiopathology , Animals , Drug Design , Female , Humans , Male , Rats , Sexual Behavior, Animal/drug effects , Sexual Behavior, Animal/physiology , Sexual Dysfunction, Physiological/drug therapy
12.
Zhonghua Nan Ke Xue ; 12(12): 1059-62, 2006 Dec.
Article in Chinese | MEDLINE | ID: mdl-17201246

ABSTRACT

Androgen has been claimed for so long as a pivotal hormone in regulating male sexual function, acting both at the central and peripheral level. We believe that androgen is indeed the main synchronizer of sexual activity regulating libido and enzymes as nitric oxide synthase (NOS) and phosphodiesterase type 5 ( PDE5) , which are crucial for the erectile process. The main action of androgen is to timely adjust the erectile process as a function manifestation of sexual desire, therefore finalizing erection to sex.


Subject(s)
Androgens/physiology , Penile Erection/physiology , Androgens/pharmacology , Animals , Male , Nitric Oxide Synthase/metabolism , Penile Erection/drug effects , Phosphoric Diester Hydrolases/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...