Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomater Appl ; 36(7): 1277-1288, 2022 02.
Article in English | MEDLINE | ID: mdl-34689658

ABSTRACT

Chemotherapeutic agents and photosensitizers often suffer from poor tumor selectivity, high side toxicity, or low water solubility. To address these problems, various drug delivery systems (DDS) have been explored but most of them are toxic, difficult to synthesize, or of single function. In order to design a highly biocompatible, conveniently prepared, multi-functional drug delivery system, herein, an aptamer of vascular endothelial growth factor (VEGF) and a cytosine (C)-DNA fragment were grafted on the surface of superparamagnetic iron oxide nanoparticles (SPION), and then a chemotherapeutic agent daunomycin (DNM) and a photosensitizer 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP) were self-assembled with the hybridized VEGF-based DNA structure. By loading DNM and TMPyP, the DDS displayed strong chemotherapeutic/phototherapeutic capability against cancer cells via mechanisms such as mitochondrial dysfunction and ROS elevation, which triggered the apoptosis of the tumor cells. The dual delivery of chemotherapeutical agents and photosensitizers with aptamer/C-rich DNA successfully integrated the functions of pH stimuli-responsive drug release and chemotherapeutic/phototherapeutic modalities into one single system and thus could be considered as an ideal drug delivery vehicle with great potential in clinic.


Subject(s)
Nanoparticles , Vascular Endothelial Growth Factor A , Cell Line, Tumor , Drug Delivery Systems , Magnetic Iron Oxide Nanoparticles , Nanoparticles/chemistry , Oligonucleotides , Photosensitizing Agents
2.
Molecules ; 24(9)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060332

ABSTRACT

Hair-coloring products include permanent, semi-permanent and temporary dyes that vary by chemical formulation and are distinguished mainly by how long they last. Domestic temporary hair dyes, such as fuchsin basic, basic red 2 and Victoria blue B, are especially popular because of their cheapness and facile applications. Despite numerous studies on the relationship between permanent hair dyes and disease, there are few studies addressing whether these domestic temporary hair dyes are associated with an increased cancer risk. Herein, to ascertain the bio-safety of these temporary hair dyes, we comparatively studied their percutaneous absorption, hemolytic effect and cytotoxic effects in this paper. Furthermore, to better understand the risk of these dyes after penetrating the skin, experimental and theoretical studies were carried out examining the interactions between the dyes and serum albumins as well as calf thymus (CT)-DNA. The results showed that these domestic temporary hair dyes are cytotoxic with regard to human red blood cells and NIH/3T3 cell lines, due to intense interactions with bovine serum albumin (BSA)/DNA. We conclude that the temporary hair dyes may have risk to human health, and those who use them should be aware of their potential toxic effects.


Subject(s)
Erythrocytes/cytology , Hair Dyes/adverse effects , NIH 3T3 Cells/cytology , Rosaniline Dyes/adverse effects , Animals , Cattle , Cell Survival/drug effects , DNA/drug effects , Erythrocytes/drug effects , Hair Dyes/chemistry , Hair Dyes/pharmacokinetics , Hemolysis , Humans , Mice , Molecular Docking Simulation , NIH 3T3 Cells/drug effects , Phenazines/adverse effects , Phenazines/chemistry , Phenazines/pharmacokinetics , Rosaniline Dyes/chemistry , Rosaniline Dyes/pharmacokinetics , Serum Albumin, Human/drug effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL