Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(21): e2300066, 2023 May.
Article in English | MEDLINE | ID: mdl-36823284

ABSTRACT

Hybrid solid-state electrolytes (HSSEs) provide new opportunities and inspiration for the realization of safer, higher energy-density metal batteries. The innovative application of 3-dimensional printing in the electrochemical field, especially in solid-state electrolytes, endows energy storage devices with fascinating characteristics. In this paper, effective dendrite-inhibited PEO/MOFs HSSEs is innovatively developed through universal room-temperature 3-dimensional printing (RT-3DP) strategy. The prepared HSSEs display enhanced dendrite inhibition due to the porous MOF filler promoting homogeneity of lithium deposition and the formation of C-OCO3 Li, ROLi, LiF mesophases, which further improve the migration of Li+ in PEO chain and comprehensive performances. This universal strategy realizes the fabrication of different slurry components (PEO with ZIF-67, MOF-74, UIO-66, ZIF-8 fillers) HSSEs at RT environment, providing new inspirations for the exploration of next-generation advanced solid-state batteries.

2.
Phys Chem Chem Phys ; 23(6): 3934-3941, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33543199

ABSTRACT

Nowadays with the increasing demand for lithium-ion batteries (LIBs), the high-capacity silicon anode is becoming a promising electrode material. However, the huge expansion of silicon during long cycling remains a significant challenge. Herein, a functional double layer Si-based multi-component structure Si@void C@TiO2 was designed as anode material for lithium-ion batteries. This structure has a void space inside and a double shell composed of carbon layer and crystalline TiO2 outside, which not only takes effective in improving electric conductivity of the Si electrode material, but also maintains the structural stability and integrity of the electrode. The layers impede the electrolyte from contacting with Si, contributing to forming a stable SEI film and providing high Coulombic efficiency. Therefore, the Si@void C@TiO2 electrode provides a high reversible capacity of 1251 mA h g-1, and stable long cycling with a capacity of 668 mA h g-1 over 500 cycles at a current density of 100 mA g-1, and 98% average Coulombic efficiency, making this potential superior material Si-based multi-component anode a high-performance electrode material for Li-ion batteries.

3.
ACS Omega ; 5(24): 14805-14813, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596618

ABSTRACT

Designing Pt-based alloy catalysts with multicomponent composition and a controllable structure is important to improve the utilization efficiency of precious metals and catalytic activity, but it still face a lot of challenges for simple preparation. Herein, we used insulin amyloid fibrils as templates and their own one-dimensional spiral structure to synthesize Pt-Rh-Pd ternary alloy nanochains under mild conditions. The prepared Pt-Rh-Pd alloy nanochains (NCs) have uniform diameter, and the particle size is only 2 nm. This ultrafine structure increases the specific surface area of the catalyst to a certain extent, and the synergistic effect of the three metals improves the catalytic performance. Compared with commercial Pt/C and binary Pt-Rh NCs, the as-presented Pt-Rh-Pd NCs show better methanol oxidation activity ability and stability against CO poisoning. The peak current density of front sweep is 1.48 mA cm-2, which is 1.7 times higher than that of commercial Pt/C (0.89 mA cm-2) and 1.4 times higher than that of the Pt-Rh NCs (1.07 mA cm-2), indicating great application potential as high-performance electrocatalysts in fuel cells.

4.
Nanotechnology ; 31(37): 375404, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32413888

ABSTRACT

Realizing high capacity at high current densities is one of the challenges for battery electrode materials towards practical applications, especially for metal oxide electrode materials. Designing a specific structure that can alleviate volume expansion and accelerate the diffusion of the ions is an effective way to achieve this goal. Herein, a porous multilayer core-shell structured manganese cobalt oxide/carbon composite (MnCo2O4/C) was obtained by using a simple route that combines the hydrothermal method with calcination. The structure is similar to a Russian doll, which is nested with three to four layers of concentric porous shells. The porous multilayer core-shell structures can relieve volume expansion during discharge/charge and reduce the Li-ion diffusion path. Additionally, it can provide a richer activity site, thereby storing more lithium ions. When used as an anode material, the synthesized MnCo2O4/C showed a high specific capacity of 978 mAh g-1 after 800 cycles at a current density of 1 A g- 1. Even at a high current density of 10 A g-1, the electrode could still deliver a specific capacity of 251 mAh g-1, which makes it more suitable for powering large equipment such as electric vehicles.

5.
ACS Omega ; 4(4): 7565-7573, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459849

ABSTRACT

To meet growing demand of energy, lithium-ion batteries (LIBs) are under enormous attention. The development of well-designed ternary transition metal oxides with high capacity and high stability is important and challengeable for using as electrode materials for LIBs. Herein, a new and highly reversible carbon-coated Cu-Co bimetal oxide composite material (Cu x Co3-x O4/C) with a one-dimensional (1D) porous rod-like structure was prepared through a bimetal-organic framework (BMOF) template strategy followed by a morphology-inherited annealing treatment. During the annealing process, carbon derived from organic frameworks in situ fully covered the synthesized bimetal oxide nanoparticles, and a large number of porous spaces were generated in the MOF-derived final samples, thus ensuring high electrical conductivity and fast ion diffusion. Benefiting from the synergetic effect of bimetals, the unique 1D porous structure, and conductive carbon network, the as-synthesized Cu x Co3-x O4/C delivers a high capacity retention up to 92.4% after 100 cycles, with a high reversible capacity still maintained at 900 mA h g-1, indicating an excellent cycling stability. Also, a good rate performance is demonstrated. These outstanding electrochemical properties show us a concept of synthesis of MOF-derived bimetal oxides combining both advantages of carbon incorporation and porous structure for progressive lithium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...