Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 429: 128294, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35065309

ABSTRACT

The abuse of cephalosporins poses a serious threat to human health and the ecological environment. In this work, cephalosporinase (AmpC enzyme) and Prussian blue (PB) crystals were encapsulated into ZIF-8 metal-organic frameworks (MOFs), and a photothermal AmpC/PB@ZIF-8 MOFs (APZ) nanocatalyst was prepared for the catalytic degradation of cephalosporin. The temperature of the APZ catalytic degradation system can be regulated by irradiation with near infrared light due to the photothermal effect of PB, and then, the activity of the APZ biocatalyst is significantly enhanced. Thereby, the degradation efficiency of cefuroxime can reach to 96%, and the degradation kinetic rate of cefuroxime augmented 4.5-fold comparing with that catalyzed by free enzyme. Moreover, encapsulation of the enzyme and PB can increase the affinity and charge transfer efficiency between APZ and substrate molecules, which can also improve the degradation efficiency of cephalosporins. Catalytic degradation pathways for three generations of cephalosporins were proposed based on their degradation products. The dual-enhancer biocatalyst based on the photothermal effect and immobilization of the PB and enzyme can significantly enhance the activity and stability of the enzyme, and it can also be recycled. Therefore, the biocatalyst has potential applications for the effective degradation of cephalosporins in the environment.


Subject(s)
Cephalosporins , Infrared Rays , Catalysis , Humans , Temperature
2.
J Chromatogr A ; 1659: 462648, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34739963

ABSTRACT

A hydrophilic metal-organic network based on Ti4+ and dual natural ligand, tannic acid (TA) and phytic acid (PA), has been developed to enrich phosphopeptides from complex bio-samples prior to liquid chromatography-mass spectrometric analysis. Due to the strong chelation ability of TA and PA, abundant Ti4+ can be immobilized in the material, forming hydrophilic network by one-step coordination-driven self-assembly approach. The sorbent, TA-Ti-PA@Fe3O4, exhibited satisfactory selectivity for the phosphopeptides in the tryptic digest of ß-casein, and can eliminate the interference components in 1000-fold excess of bovine serum albumin. The adsorption capacity of the sorbents for phosphopeptides was up to 35.2 mg g-1 and the adsorbing equilibrium can be reached in 5 min. The adsorbing mechanism has been investigated and the results indicated that the Ti4+ in forms of [Ti(f-TA)(H2O)4]2+, [Ti(f-PA)(H2O)4]2+ and Ti(f-PA)2(H2O)2 may play an important role in the adsorption process. The sorbent of the TA-Ti-PA@Fe3O4 has been applied to enrichment of the phosphopeptides in tryptic digest of rat liver lysate, and 3408 phosphopeptides have been identified, while the numbers of the identified phosphopeptides were 2730 and 1217 when the sample was enriched by the commercial TiO2 and Fe3+-IMAC kit, respectively. This work provides a strategy to enrich phosphopeptides from complex samples and shows great potential application in phosphoproteome research.


Subject(s)
Phosphopeptides , Titanium , Animals , Chromatography, Affinity , Hydrophobic and Hydrophilic Interactions , Ligands , Rats
3.
J Hazard Mater ; 414: 125549, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33676260

ABSTRACT

The pollution caused by the abuse of antibiotics has posed a serious threat to the ecological environment and human health, so development of effective strategies for degradation and disposal of antibiotic residues is urgently needed. In this work, penicillinase, a kind of ß-lactamase, was immobilized into zeolitic imidazolate framework-8 (ZIF-8) by self-assembly method and the catalytic performance of the ß-lactamase@ZIF-8 porous materials for degradation of penicillins has been investigated by high performance liquid chromatography coupled with mass spectrometry. The results illustrated that the catalytic activity of the encapsulated enzyme was significantly enhanced comparing with that of free enzyme. Meanwhile, the ß-lactamase@ZIF-8 exhibited excellent stability under denaturing conditions including high temperature, organic solvent and the enzyme inhibitor. The catalytic degradation mechanism of the ß-lactamase@ZIF-8 for penicillins has been probed and verified, and it has been found that the Zn (II) ion on ZIF-8 frameworks could form the complex with the target molecule, which weakened the bond of the four-membered ß-lactam ring in the penicillin molecule, and thus enhanced the degradation efficiency of the enzyme. This work provided a promising strategy for eliminating the penicillin residues in water environment.


Subject(s)
Metal-Organic Frameworks , Zeolites , Chromatography, High Pressure Liquid , Humans , Penicillins , beta-Lactamases
4.
Anal Chem ; 91(17): 11316-11323, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31403771

ABSTRACT

The traditional enzyme-linked immunosorbent assay (ELISA) has some disadvantages, such as insufficient sensitivity and low stability of the labeled enzyme, which limit its further applications. In this study, a more stable enzyme, Amp cephalosporinase (AmpC), was selected as the labeled enzyme, and its substrate was designed and synthesized. This substrate contained the cephalosporin ring core as the enzymatic recognition section and the structural motif of the 3-hydroxyflavone (3-HF) as the reporter molecule. AmpC can specifically catalyze the substrate and release 3-HF, which can enter the cavity of ß-cyclodextrin (ß-CD) on the surface of ZnS quantum dots and form a fluorescence resonance energy transfer (FRET) signal amplification system. An AmpC-catalyzed, FRET-mediated ultrasensitive immunosensor (ACF immunosensor) for procalcitonin (PCT) was developed by combining the signal amplification system of the polystyrene microspheres and effective immune-based magnetic separation. The ACF immunosensor has high sensitivity and specificity for the detection of PCT: its linear range is from 0.1 ng mL-1 to 70 ng mL-1, and the limit of detection can reach 0.03 ng mL-1. The spiking recoveries of PCT in human serum samples range from 98.3% to 107%, with relative standard deviations ranging from 2.14% to 12.0%. This approach was applied to detect PCT in real patient serum samples, and the results are consistent with those obtained with a commercial ELISA kit.


Subject(s)
Biosensing Techniques , Cephalosporinase/chemistry , Enzyme-Linked Immunosorbent Assay , Flavonoids/blood , Fluorescence Resonance Energy Transfer , Cephalosporinase/chemical synthesis , Cephalosporinase/metabolism , Humans , Molecular Structure , Substrate Specificity
5.
Mikrochim Acta ; 186(2): 68, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30627783

ABSTRACT

A novel magnetic nanomaterial for use in metal ion based affinity chromatography is described. It is based on the chelation between the phosphate groups of phytic acid (PA) and Ti(IV) ions. Due to the large number (6) of phosphate groups of PA, it has a large capacity for Ti(IV) ions. PA was first immobilized on magnetite nanoparticles (PA-MNPs) and then loaded with Ti(IV) ions to obtain the sorbent (Ti-PA-MNPs). The fraction of Ti(IV) ions on the surface of PA-MNPs that is exposed to the solution binds the phosphate groups of phosphopeptides. The bound phosphopeptides can then be magnetically separated. The method was applied to the enrichment of the phosphopeptides in a ß-casein tryptic digest. A tryptic digest of bovine serum albumin (BSA) was added at a molar ratio (ß-casein to BSA) of 1:2000 to study selectivity. The phosphopeptides were quantified by mass spectrometry. The limit of detection can be as low as 8 × 10-10 mol L-1. This sorbent has a high absorption capacity (53.5 µg mg-1) and shows good recoveries (90%). As many as 2145 phosphopeptides were isolated from 500 µg tryptic digest of a rat liver lysate after enrichment by Ti-PA-MNPs. This is superior to that (1568 phosphopeptides) of commercial TiO2 kit. Graphical abstract Schematic presentation of fabrication for a novel modified magnetic nanomaterial (Ti-PA-MNPs) based on the chelation of phytic acid (PA) with Ti(IV) ions. Ti-PA-MNPs were successfully applied to enriching low abundance phosphopeptides from biosamples in mass spectrometric analysis.


Subject(s)
Magnetite Nanoparticles/chemistry , Mass Spectrometry/methods , Phosphopeptides/analysis , Adsorption , Animals , Caseins/metabolism , Cattle , Limit of Detection , Liver/chemistry , Phytic Acid/chemistry , Rats , Serum Albumin, Bovine/analysis , Serum Albumin, Bovine/metabolism , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...