Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Adv Rheumatol ; 64(1): 18, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438904

ABSTRACT

INTRODUCTION: If a large amount of urate crystals is deposited in a joint cavity for an extended period of time, bone erosion will occur and gradually cause skeletal muscle necrosis and joint deformity. The aim of this study was to describe the clinical characteristics and factors associated with bone erosion in gout patients with tophi. METHODS: A total of 210 gout patients with tophi were enrolled and divided into a bone erosion group (n = 135) and a non-bone erosion group (n = 75). Digital radiography (DR) was performed to detect bone erosion in the elbow, wrist, knee, ankle joints, interphalangeal and metatarsophalangeal joints. The clinical characteristics were recorded and compared between the two groups. Multivariate logistic regression analysis was conducted to explore the factors associated with bone erosion. RESULTS: Compared with the non-bone erosion group, the bone erosion group had an older age, longer disease duration of gout and tophi, higher level of serum creatinine (sCr), higher proportion of drinking history and ulceration, and a lower glomerular filtration rate (GFR). Univariate logistic regression analysis results showed that sex, age, body mass index (BMI), gout duration, tophi duration, GFR, white blood cell (WBC) count, sCr level, smoking history, drinking history, and presence of ulceration were associated with bone destruction. Multivariable logistic regression analysis results indicated that tophi duration, drinking history, ulceration and sCr were positively and independently related to bone erosion. CONCLUSIONS: Tophi patients with bone erosion presented different clinical characteristics. Tophi duration, drinking history, ulceration and sCr were associated with bone erosion in gout patients with tophi.


Subject(s)
Gout , Humans , Gout/complications , Risk Factors , Smoking/adverse effects , Body Mass Index , Glomerular Filtration Rate
2.
Heliyon ; 10(3): e24818, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38327427

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease associated with an increased risk of disability. Due to its slow progression, timely diagnosis and treatment during the early stages can effectively decelerate disease advancement. Consequently, there is a pressing need to investigate additional biomarkers and therapeutic targets relevant to RA diagnosis. Mitochondrial autophagy, a biological process that regulates the quantity of mitochondria, is intricately linked to the development of tumor diseases. However, the role of autophagy in RA remains unclear. To address this, transcriptome data from the GEO database were collected for RA and its controls and subjected to differential expression analysis. The differentially expressed genes obtained were then intersected with mitochondrial autophagy-related genes. Subsequently, the overlapping genes were further intersected with genes from critical modules obtained through the weighted co-expression network algorithm. Diagnostic genes were identified, and diagnostic models were constructed for the resulting genes using the random forest and LASSO algorithms. The model achieved an AUC of 0.916 in the GSE93272 dataset and 0.951 in the GSE17755 dataset. Additionally, qPCR experiments were conducted on the diagnostic genes. Finally, we explored the correlation between the abundance of immune cell infiltration and diagnostic genes, constructing a drug-gene interaction network. The diagnostic genes identified in this study can serve as a reference for early diagnosis and the discovery of therapeutic targets in RA.

3.
Aging (Albany NY) ; 16(2): 1249-1275, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38271056

ABSTRACT

Disulfidptosis is a recently identified type of programmed cell death. It is characterized by aberrant accumulation of intracellular disulfides. The clinical implications of disulfidptosis in clear cell renal cell carcinoma (ccRCC) remain unclear. A series of bioinformatics approaches were employed to analyze ten disulfidptosis-related molecules. Firstly, the expression patterns of the disulfidptosis-related molecules were different between normal and ccRCC tissues. A comprehensive cohort of patients with ccRCC was then assembled from three public databases and subjected to cluster analysis based on disulfidptosis-related molecules. Consensus cluster analysis revealed three distinct disulfidptosis clusters. We then conducted weighted gene co-expression network analysis (WGCNA) to identify highly correlated genes. 267 hub genes were screened out through WGCNA, and three gene clusters were then determined. Finally, we identified 87 genes with prognostic value and then used them to develop a disulfidptosis scoring (DSscore) system, which was proven to independently predict survival in ccRCC. Patients in the high-DSscore group exhibited a significant survival advantage and better immunotherapeutic responses compared with those in the low-DSscore group. However, the patients in the low-DSscore group exhibited a greater degree of chemotherapeutic response. In addition, the expression of disulfidptosis-related molecules was validated by qRT-PCR, and the potential of disulfidptosis-related molecules to indicate distinct cell subtypes were validated by single-cell RNA-sequencing. In conclusion, DSscore is a promising index for predicting the prognosis and efficacy of immunotherapy in patients with ccRCC and may provide a basis for novel strategies for future studies.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Prognosis , Apoptosis , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Tumor Microenvironment
4.
Cell Rep Med ; 4(10): 101240, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37852185

ABSTRACT

To construct a urine extracellular vesicle long non-coding RNA (lncRNA) classifier that can detect high-grade prostate cancer (PCa) of grade group 2 or greater and estimate the risk of progression during active surveillance, we identify high-grade PCa-specific lncRNAs by combined analyses of cohorts from TAHSY, TCGA, and the GEO database. We develop and validate a 3-lncRNA diagnostic model (Clnc, being made of AC015987.1, CTD-2589M5.4, RP11-363E6.3) that can detect high-grade PCa. Clnc shows higher accuracy than prostate cancer antigen 3 (PCA3), multiparametric magnetic resonance imaging (mpMRI), and two risk calculators (Prostate Cancer Prevention Trial [PCPT]-RC 2.0 and European Randomized Study of Screening for Prostate Cancer [ERSPC]-RC) in the training cohort (n = 350), two independent cohorts (n = 232; n = 251), and TCGA cohort (n = 499). In the prospective active surveillance cohort (n = 182), Clnc at diagnosis remains a powerful independent predictor for overall active surveillance progression. Thus, Clnc is a potential biomarker for high-grade PCa and can also serve as a biomarker for improved selection of candidates for active surveillance.


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , Male , Humans , RNA, Long Noncoding/genetics , Prospective Studies , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Neoplasm Grading , Biomarkers
5.
Sensors (Basel) ; 23(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37571767

ABSTRACT

Due to their ability to achieve higher DOA estimation accuracy and larger degrees of freedom (DOF) using a fixed number of antennas, sparse arrays, etc., nested and coprime arrays have attracted a lot of attention in relation to research into direction of arrival (DOA) estimation. However, the usage of the sparse array is based on the assumption that the signals are independent of each other, which is hard to guarantee in practice due to the complex propagation environment. To address the challenge of sparse arrays struggling to handle coherent wideband signals, we propose the following method. Firstly, we exploit the coherent signal subspace method (CSSM) to focus the wideband signals on the reference frequency and assist in the decorrelation process, which can be implemented without any pre-estimations. Then, we virtualize the covariance matrix of sparse array due to the decorrelation operation. Next, an enhanced spatial smoothing algorithm is applied to make full use of the information available in the data covariance matrix, as well as to improve the decorrelation effect, after which stage the multiple signal classification (MUSIC) algorithm is used to obtain DOA estimations. In the simulation, with reference to the root mean square error (RMSE) that varies in tandem with the signal-to-noise ratio (SNR), the algorithm achieves satisfactory results compared to other state-of-the-art algorithms, including sparse arrays using the traditional incoherent signal subspace method (ISSM), the coherent signal subspace method (CSSM), spatial smoothing algorithms, etc. Furthermore, the proposed method is also validated via real data tests, and the error value is only 0.2 degrees in real data tests, which is lower than those of the other methods in real data tests.

6.
Sensors (Basel) ; 23(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37514657

ABSTRACT

In an ultra-wideband (UWB) system, the two-dimensional (2D) multiple signal classification (MUSIC) algorithms based on high-precision 2D spectral peak search can jointly estimate the time of arrival (TOA) and angle of arrival (AOA). However, the computational complexity of 2D-MUSIC is very high, and the corresponding data model is only based on the dual antennas. To solve these problems, a low-complexity algorithm for joint AOA and TOA estimation of the multipath ultra-wideband signal is proposed. Firstly, the dual antenna sensing data model is extended to the antenna array case. Then, based on the array-sensing data model, the proposed algorithm transforms the 2D spectral peak search of 2D-MUSIC into a secondary optimization problem to extract the estimation of AOA via only 1D search. Finally, the acquired AOA estimations are brought back, and the TOA estimations are also obtained through a 1D search. Moreover, in the case of an unknown transmitted signal waveform, the proposed method can still distinguish the main path signal based on the time difference of arrival of different paths, which shows wider applications. The simulation results show that the proposed algorithm outperforms the Root-MUSIC algorithm and the estimation of signal parameters using the rotational invariance techniques (ESPRIT) algorithm, and keeps the same estimation accuracy but with greatly reduced computational complexity compared to the 2D-MUSIC algorithm.

7.
Int Immunopharmacol ; 122: 110560, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423153

ABSTRACT

OBJECTIVES: Our study profiled the CD4 + T-cell-derived exosomes from patients with rheumatoid arthritis (RA) using proteomics. METHODS: Proteomic analysis of CD4 + T-cell-derived exosomes was performed by tandem mass tags (TMT) combined with LC-MS/MS. We validated the most significantly upregulated and downregulated proteins using ELISA and WB. RESULTS: The proteomic results showed that there were 3 upregulated differentially expressed proteins and 31 downregulated differentially expressed proteins in the RA group. The results indicated that dihydropyrimidinase-related protein 3 (DPYSL3) was significantly upregulated in CD4 + T-cell-derived exosomes, whereas proteasome activator complex subunit 1 (PSME1) was significantly downregulated in the RA group. Bioinformatics analysis showed that proteins were enriched in "positive regulation of gene expression", "antigen processing and presentation", "acute-phase response" and "PI3K-AKT signaling" pathways. ELISA verified that compared to the control group, the RA group showed significant upregulation of DPYSL3, and downregulation of PSME1 in CD4 + T-cell-derived exosomes. CONCLUSIONS: The proteomic analysis results of CD4 + T-cell-derived exosomes from patients with RA suggest that these differentially expressed proteins may be involved in RA pathogenesis. DPYSL3 and PSME1 may become useful biomarkers for RA.


Subject(s)
Arthritis, Rheumatoid , Exosomes , Humans , Exosomes/metabolism , Proteomics , Chromatography, Liquid , Phosphatidylinositol 3-Kinases/metabolism , Tandem Mass Spectrometry , CD4-Positive T-Lymphocytes
8.
Front Endocrinol (Lausanne) ; 14: 1167756, 2023.
Article in English | MEDLINE | ID: mdl-37143721

ABSTRACT

Objective: This study aimed to analyze the effect of urate deposition (UD) on bone erosion and examine the association between the volume of monosodium urate (MSU) crystals and an improved bone erosion score method, as measured in the metatarsophalangeal (MTP) joints of patients with gout. Materials and methods: Fifty-six patients diagnosed with gout using the 2015 European League Against Rheumatism and American College of Rheumatology criteria were enrolled. MSU crystals volume at each MTP joint was measured using dual-energy computed tomography (DECT) images. The degree of bone erosion was evaluated with the modified Sharp/van der Heijde (SvdH) erosion scoring system based on CT images. Differences in clinical features between patients with (UD group) and without (non-UD group) UD were assessed, and the correlation between erosion scores and urate crystal volume was analyzed. Results: The UD and non-UD groups comprised 30 and 26 patients, respectively. Among the 560 MTP joints assessed, 80 showed MSU crystal deposition, and 108 showed bone erosion. Bone erosion occurred in both groups but was significantly less severe in the non-UD group (p <0.001). Both groups had equivalent levels of serum uric acid (p=0.200). Symptom duration was significantly longer in the UD group (p=0.009). The UD group also had a higher rate of kidney stones (p=0.023). The volume of MSU crystals was strongly and positively associated with the degree of bone erosion (r=0.714, p <0.001). Conclusion: This study found that patients with UD show significant increased bone erosion than those without UD. The volume of MSU crystals is associated with the improved SvdH erosion score based on CT images, regardless of serum uric acid level, demonstrating the potential of combining DECT and serum uric acid measurements in helping optimize the management of patients with gout.


Subject(s)
Gout , Uric Acid , Humans , Tomography, X-Ray Computed/methods , Gout/complications , Gout/diagnostic imaging
9.
Br J Cancer ; 128(7): 1320-1332, 2023 03.
Article in English | MEDLINE | ID: mdl-36703078

ABSTRACT

BACKGROUND: We aimed to develop and validate a plasma extracellular vesicle circular RNA (circRNA)-based signature that can predict overall survival (OS) in first-line abiraterone therapy for metastatic castration-resistant prostate cancer (mCRPC) patients. METHODS: In total, 582 mCRPC patients undergoing first-line abiraterone therapy from four institutions were sorted by three phases. In the discovery phase, 30 plasma samples from 30 case-matched patients with or without early progression were obtained to generate circRNA expression profiles using RNA sequencing. In the training phase, differentially expressed circRNAs were examined using digital droplet PCR in a training cohort (n = 203). The circRNA signature was constructed using a least absolute shrinkage and selection operator Cox regression to predict OS. In the validation phase, the prognostic ability of this signature was prospectively validated in two external cohorts (Cohort I, n = 183; Cohort II, n = 166). RESULTS: We developed a five-circRNA signature, based on circCEP112, circFAM13A, circBRWD1, circVPS13C and circMACROD2, which successfully stratified patients into high-risk and low-risk groups. The prognostic ability of this signature was prospectively validated in two external cohorts (P < 0.0001, P < 0.0001). Patients with high-risk scores had shorter OS than patients with low-risk scores. CONCLUSION: This five-circRNA signature is a reliable predictor of OS for mCRPC patients undergoing abiraterone.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , RNA, Circular , Male , Humans , RNA, Circular/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostate-Specific Antigen , Treatment Outcome , Abiraterone Acetate/adverse effects
10.
Eur Arch Otorhinolaryngol ; 280(5): 2479-2488, 2023 May.
Article in English | MEDLINE | ID: mdl-36577788

ABSTRACT

OBJECTIVES: First, we retrospectively compared the clinical efficacy of concurrent chemoradiotherapy combined with nimotuzumab vs. chemoradiotherapy alone in patients with nasopharyngeal carcinoma (NPC) and cervical lymph node metastasis. Second, we analyzed the value of Ki-67 as a predictor of nimotuzumab efficacy. METHODS: From January 2012 to December 2019, 1250 patients with cervical lymph node metastasis eligible for enrollment were included, of whom 383 were treated with concurrent chemoradiotherapy combined with nimotuzumab (targeted therapy group), and 867 were treated with concurrent chemoradiotherapy (CRT group). A total of 381 pairs of patients were matched using 1:1 propensity score matching, and differences in clinical prognosis were compared between the two groups. RESULTS: Overall survival (OS) (P = 0.028), disease-free survival (DFS) (P = 0.040), and distant metastasis-free survival (DMFS) (P = 0.040) were better in the targeted therapy compared to the CRT group. Multivariate analysis revealed that clinical staging, chemotherapy, and nimotuzumab therapy were predictors of OS and DFS. In the targeted therapy group, patients with ≥ 50% Ki-67 positivity had better OS and DFS rates than those with < 50% Ki-67 positivity. CONCLUSIONS: In patients with stage N1-3 NPC and lymph node metastasis, the addition of nimotuzumab to concurrent chemoradiotherapy may provide additional survival benefits. Ki-67 is a potential biomarker with clinical predictive value for the efficacy of nimotuzumab combined with chemoradiotherapy.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Lymphatic Metastasis , Retrospective Studies , Ki-67 Antigen , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemoradiotherapy , Neoplasm Staging
11.
Comb Chem High Throughput Screen ; 26(11): 1974-1989, 2023.
Article in English | MEDLINE | ID: mdl-36475339

ABSTRACT

BACKGROUND: Bridging integrator 3 (BIN3) has been reported to play a key role in certain tumors. Nevertheless, little is known about the role and clinical value of BIN3 in esophagus carcinoma (ESCA). This study aimed to investigate the pathological and prognostic role of BIN3 in ESCA patients. METHODS: Genes significantly correlated with the prognosis of ESCA patients were screened and identified by comprehensive analysis of differentially expressed genes associated with overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI) in ESCA. The expression of BIN3, pathological features correlation and subgroup overall survival analysis were performed using The Cancer Genome Atlas (TCGA) and GTEx databases. Moreover, the potential signaling pathways in which BIN3 was involved were analyzed by GO-KEGG enrichment analysis and gene set enrichment analysis (GSEA). Immune infiltrates correlation of BIN3 in ESCA was performed by TIMER and ssGSEA. The influence of BIN3 on epithelial-mesenchymal transition (EMT) was validated by western blot. RESULTS: There were two differentially expressed genes related to the prognosis of ESCA patients, which were identified from three gene clusters associated with overall survival (OS), diseasespecific survival (DSS) and progression-free interval (PFI) in ESCA patients. The BIN3 mRNA level was found to be significantly decreased in ESCA compared to normal tissues (p < 0.05). The decreased expression of BIN3 in ESCA was significantly correlated with the clinical stage (p = 0.015), T stage (p < 0.05), histological type (p < 0.001), age (p < 0.05) and gender (p < 0.05). ESCA patients with high BIN3 expression were observed to be correlated with T stage (T3 & T4), age (<=60), gender (male), primary therapy outcome (PD) and columnar metaplasia (No) of favorable OS. GO-KEGG enrichment analysis revealed that BIN3 was involved in endocytosis. GSEA showed that several pathways were enriched in BIN3, such as O linked glycosylation of mucins, PID HNF3B pathway, biocarta TFF pathway, WP pregnane X receptor pathway, reactome regulation of beta cell development, WP Urea cycle and associated pathways and others. BIN3 was significantly related to the infiltration level of T cells (p < 0.001), Tregs (p < 0.001), B cells (p < 0.001), NK cells (p < 0.001), and macrophage M2 (p < 0.001). In addition, BIN3 overexpression inhibited N-cadherin expression and promoted E-cadherin expression in ESCA cell lines TE-1. CONCLUSION: These results suggest that BIN3 might be a potential prognostic biomarker in ESCA. BIN3 functions as a tumor-suppressor role in ESCA, which is significantly associated with the immune infiltration of ESCA.


Subject(s)
Carcinoma , Esophageal Neoplasms , Humans , Male , Down-Regulation , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Cell Differentiation , Microfilament Proteins
12.
Front Oncol ; 12: 988458, 2022.
Article in English | MEDLINE | ID: mdl-36212389

ABSTRACT

Background: Liquid biopsy facilitates the enrichment and isolation of circulating tumor cells (CTCs) in various human cancers, including nasopharyngeal carcinoma (NPC). Characterizing CTCs allows observation of the evolutionary process of single tumor cells undergoing blood-borne dissemination, such as epithelial-mesenchymal transition. However, the prognostic value of phenotypic classification of CTCs in predicting the clinical outcomes of NPC remains poorly understood. Patients and methods: A total of 92 patients who met the inclusion criteria were enrolled in the present study. The CanPatrol™ CTC technology platform was employed to isolate CTCs, and an RNA in situ hybridization-based system was used for phenotypic classification. Kaplan-Meier survival curves were used for univariate survival analysis, and the log-rank test was performed for between-group comparisons of the survival curves. Results: CTCs were detected in 88.0% (81/92) of the enrolled patients with NPC. The total CTC number did not vary between the T and N stages or between Epstein-Barr virus DNA-positive and -negative cases. The numbers of total CTCs and epithelial/mesenchymal (E/M) hybrid CTCs decreased significantly at 3 months post concurrent chemoradiotherapy (P=0.008 and P=0.023, respectively), whereas the numbers of epithelial or mesenchymal CTCs did not decrease. E/M hybrid-predominant cases had lower disease-free survival (P=0.043) and distant metastasis-free survival (P=0.046) rates than non-E/M hybrid-predominant cases. Conclusion: CTC classification enables a better understanding of the cellular phenotypic alterations responsible for locoregional invasion and distant metastasis in NPC. E/M hybrid-predominant CTC distribution predicts unfavorable clinical outcomes in patients with progressive NPC.

13.
Ying Yong Sheng Tai Xue Bao ; 33(7): 1911-1918, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-36052795

ABSTRACT

Biochar is beneficial to soil phosphorus (P) availability and crop growth, but the effects vary greatly across different soil types. We investigated the effects of rice straw biochar (4% of total mass) and P application (0, 30, and 90 kg P·hm-2) on soil P availability, phosphomonoesterase activity, and soybean P uptake by using lateritic red soil (pH 4.91) and cinnamon soil (pH 7.24) as test materials. The results showed that biochar application at different P levels significantly increased available P and total P in both soils. Biochar application with 30 kg P·hm-2 increased soil available P with maxima at 192.6% and 237.1% in lateritic red soil and cinnamon soil, respectively. Biochar application with 30 kg P·hm-2 in lateritic red soil significantly increased the activity of alkaline phosphomonoesterase by 78.9%, decreased the content of active organic P by 39.3%, and subsequently stimulated soybean P absorption and growth. Biochar amendment significantly reduced active organic P content in cinnamon soil, but did not affect soil phosphomonoesterase activity and plant growth. The content of active organic P was significantly negatively correlated with soil available P content. In summary, the effect of biochar on soil P availability varied across different soil types (lateritic red soil > cinnamon soil) and P levels (better at 30 kg P·hm-2). Our results could provide scientific basis for a promising application of biochar in reducing the amount of P fertilizer and increasing soybean P uptake, especially in lateritic red soil.


Subject(s)
Soil Pollutants , Soil , Charcoal/chemistry , Phosphoric Monoester Hydrolases , Phosphorus/chemistry , Soil/chemistry , Soil Pollutants/analysis , Glycine max
14.
Environ Pollut ; 312: 119992, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36029904

ABSTRACT

Eutrophication is an important water environment issue facing global lakes. Diversion of water from external watersheds into lakes is considered as effective in ameliorating eutrophication and reducing algal blooms. Nevertheless, the changes in lake water environment caused by external water diversion, especially the influence of water diversion on the characteristics of dissolved organic matters (DOM), are still poorly understood. We therefore used a combination of EEM-PARAFAC, Principal Component Analysis (PCA), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to investigate the effects of water diversion from the Niulan River on DOM characteristics in Lake Dianchi. The results showed that the water diversion from the Niulan River significantly improved the water quality of Lake Dianchi, the concentrations of TN, TP, COD and Chla decreased rapidly, and the degree of humification of dissolved organic matter (DOM) increased, which was in sharp contrast with that of pre-implementation. Firstly, the diversion of water from the Niulan River mainly led to changes in the structure of pollution sources. The load of influent rivers and sewage treatment plants rich in lignin and tannins increased, and the input of terrestrial humus increased. Second, the improved water quality reduced algal enrichment and frequency of blooms, and reduced the release of lipid- and protein-riched algal-derived DOM. Finally, the hydraulic retention time of Lake Dianchi caused by water diversion was shortened, the hydrodynamic conditions were significantly improved, and the dissolved oxygen (DO) level gradually recovered, which played a positive role in improving the humification degree of DOM. Our findings provide new insights for exploring the improvement of eutrophic lake eco-environmental quality caused by water diversion projects.


Subject(s)
Dissolved Organic Matter , Lakes , China , Lakes/chemistry , Lignin , Lipids , Oxygen/analysis , Sewage/analysis , Soil , Tannins , Water Quality
15.
Front Immunol ; 13: 914265, 2022.
Article in English | MEDLINE | ID: mdl-35874753

ABSTRACT

Background: Macrophage activation syndrome (MAS) is a severe complication of autoimmune diseases with high mortality. We report the effectiveness of baricitinib as an option for the maintenance therapy in MAS secondary to nodular panniculitis. Case summary: A 24-year-old female came to our hospital with repeated fever and a skin nodule on right tibial tuberosity. Results were notable for raised serum ferritin (SF), triglycerides (TG), elevated liver function enzymes, interleukin-6 (IL-6), interferon-γ (IFN-γ), soluble interleukin-2 receptor (sIL-2R) and decreased activity of NK cells. The pathological biopsy of the subcutaneous nodules indicated nodular panniculitis. Hemophagocytic cells were found in bone marrow aspiration. She was diagnosed as MAS secondary to nodular panniculitis. With the treatment of methylprednisolone (MP) and immunoglobulin, her symptoms and laboratory data gradually improved. Nevertheless, her disease relapsed when the MP dose was tapered. Regarding the usage of JAK inhibitors in MAS, we used baricitinib (JAK1/2 inhibitor) to treat MAS and her symptom and abnormal laboratory findings returned to normal. During follow-up, though the MP dose was tapered, she was stable without a MAS recurrence. Conclusion: The case report suggested baricitinib is an option for MAS in the maintenance therapy phase and is potentially beneficial to prevent recurrence.


Subject(s)
Azetidines , Macrophage Activation Syndrome , Panniculitis , Skin Neoplasms , Adult , Azetidines/therapeutic use , Female , Humans , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/drug therapy , Macrophage Activation Syndrome/etiology , Methylprednisolone/therapeutic use , Purines/therapeutic use , Pyrazoles , Skin Neoplasms/complications , Sulfonamides , Young Adult
16.
Oxid Med Cell Longev ; 2022: 4201287, 2022.
Article in English | MEDLINE | ID: mdl-35783188

ABSTRACT

Objective: Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in transplanted kidneys. This study was aimed at exploring the role of PLK3 (polo-like kinase 3) in renal I/R injury, focusing on its relationship with oxidative stress-induced DNA damage and renal tubular epithelial cell (TEC) apoptosis. Methods: TRAP-seq data from the development dataset GSE52004 and the validation dataset GSE121191 were analyzed using GEO2R. PLK3 overexpression plasmids and targeted silencing siRNAs were used in a model of hypoxia/reoxygenation (H/R) injury, and rAAV-9-PLK3-KD were administered to C57BL/6J mice exposed to I/R injury. The ATM-specific inhibitor KU-60019 was used to block the DNA damage response (DDR). Western blotting was performed to measure DDR- and apoptosis-associated protein expression. Cell viability was measured by CCK-8 reagent, and apoptosis was examined by flow cytometry and TUNEL assay. Furthermore, the fluorescent probes H2DCFH-DA and DHE were used to measure ROS production in vitro. The MDA level and SOD activity were measured to assess oxidative stress in vivo. KIM-1 staining and Scr and BUN were used to evaluate kidney injury. Results: The mRNA and protein levels of PLK3 were markedly increased in the H/R injury and I/R injury models. GO terms showed that PLK3 was mainly involved in oxidative stress and DNA damage after renal I/R injury. Overexpression of PLK3 decreased cell viability and increased apoptosis. In contrast, targeted silencing of PLK3 expression decreased the Bax/Bcl-2 ratio by decreasing P53 phosphorylation, thereby reducing TEC apoptosis. Furthermore, KU-60019 reduced PLK3 activation and DDR-induced apoptosis, while overexpression of PLK3 reversed the mitigating effect of KU-60019 on TEC apoptosis. Similarly, rAAV-9-PLK3 KD mice exhibited a lower rate of TEC apoptosis and milder renal damage after I/R injury. Conclusion: We demonstrate for the first time that PLK3 is involved in oxidative stress-induced DNA damage and TEC apoptosis in renal I/R injury. Inhibition of PLK3 attenuates TEC apoptosis after I/R injury by blocking the ATM/P53-mediated DDR. Therefore, PLK3 may serve as a potential therapeutic target for ischemic AKI.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Acute Kidney Injury/metabolism , Animals , Apoptosis , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Epithelial Cells/metabolism , Kidney/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Reperfusion Injury/metabolism , Tumor Suppressor Protein p53/metabolism
17.
Front Immunol ; 13: 800902, 2022.
Article in English | MEDLINE | ID: mdl-35359923

ABSTRACT

Objectives: To compare the proteomics of synovial fluid (SF)-derived exosomes in rheumatoid arthritis (RA), axial spondyloarthritis (axSpA), gout, and osteoarthritis (OA) patients. Methods: Exosomes were separated from SF by the Exoquick kit combined ultracentrifugation method. Tandem mass tags (TMT)-labeled liquid chromatography mass spectrometry (LC-MS/MS) technology was used to analyze the proteomics of SF-derived exosomes. Volcano plot, hierarchical cluster, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Results: A total of 1,678 credible proteins were detected. Sixty-nine differentially expressed proteins were found in gout, compared with OA, axSpA, and RA simultaneously. Twenty-five proteins were found highly expressed in gout uniquely, lysozyme C and protein S100-A9 included, whose bioinformatic analysis was significantly involved in "neutrophil degranulation" and "prion diseases". Eighty-four differentially expressed proteins were found in axSpA, compared with OA, gout, and RA simultaneously. Thirty-nine proteins were found highly expressed in axSpA uniquely, RNA-binding protein 8A and protein transport protein Sec24C included, whose bioinformatic analysis was significantly involved in "acute-phase response" and "citrate cycle". One hundred and eighty-four differentially expressed proteins were found in RA, compared with OA, gout, and axSpA simultaneously. Twenty-eight proteins were found highly expressed in RA uniquely, pregnancy zone protein (PZP) and stromelysin-1 included, whose bioinformatic analysis was significantly involved in "serine-type endopeptidase inhibitor activity" and "complement and coagulation cascades". Enzyme-linked immunosorbent assay (ELISA) result showed that the exosome-derived PZP level of SF in RA was higher than that in OA (p < 0.05). Conclusion: Our study for the first time described the protein profiles of SF-derived exosomes in RA, axSpA, gout, and OA patients. Some potential biomarkers and hypothetical molecular mechanisms were proposed, which may provide helpful diagnostic and therapeutic insights for inflammatory arthritis (IA).


Subject(s)
Arthritis, Rheumatoid , Exosomes , Gout , Osteoarthritis , Arthritis, Rheumatoid/metabolism , Chromatography, Liquid , Exosomes/metabolism , Gout/metabolism , Humans , Osteoarthritis/metabolism , Proteins/metabolism , Proteomics , Synovial Fluid/metabolism , Tandem Mass Spectrometry
18.
Front Cell Dev Biol ; 10: 800650, 2022.
Article in English | MEDLINE | ID: mdl-35211472

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is an inevitable process in kidney transplantation, leading to acute kidney injury, delayed graft function (DGF), and even graft loss. Ferroptosis is an iron-dependent regulated cell death in various diseases including IRI. We aimed to identify subtypes of renal IRI and construct a robust DGF predictive signature based on ferroptosis-related genes (FRGs). A consensus clustering analysis was applied to identify ferroptosis-associated subtypes of 203 renal IRI samples in the GSE43974 dataset. The FRG-associated DGF predictive signature was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO), and its robustness was further verified in the validation set GSE37838. The present study revealed two ferroptosis-related patient clusters (pBECN1 and pNF2 cluster) in renal IRI samples based on distinct expression patterns of BECN1 and NF2 gene clusters. Cluster pBECN1 was metabolically active and closely correlated with less DGF, while pNF2 was regarded as the metabolic exhausted subtype with higher incidence of DGF. Additionally, a six-gene (ATF3, SLC2A3, CXCL2, DDIT3, and ZFP36) ferroptosis-associated signature was constructed to predict occurrence of DGF in renal IRI patients and exhibited robust efficacy in both the training and validation sets. High-risk patients tended to have more infiltration of dendritic cells, macrophages, and T cells, and they had significantly enriched chemokine-related pathway, WNT/ß-catenin signaling pathway, and allograft rejection. Patients with low risks of DGF were associated with ferroptosis-related pathways such as glutathione and fatty acid metabolism pathways. In conclusion, patient stratification with distinct metabolic activities based on ferroptosis may help distinguish patients who may respond to metabolic therapeutics. Moreover, the DGF predictive signature based on FRGs may guide advanced strategies toward prevention of DGF in the early stage.

19.
Oxid Med Cell Longev ; 2022: 5831247, 2022.
Article in English | MEDLINE | ID: mdl-35096270

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. Redox metabolism has been recognized as the hallmark of cancer. But the concrete role of redox-related genes in patient stratification of ccRCC remains unknown. Herein, we aimed to characterize the molecular features of ccRCC based on the redox gene expression profiles from The Cancer Genome Atlas. Differentially expressed redox genes (DERGs) and vital genes in metabolism regulation were identified and analyzed in the ccRCC. Consensus clustering was performed to divide patients into three clusters (C1, C2, and C3) based on 139 redox genes with median FPKM value > 1. We analyzed the correlation of clusters with clinicopathological characteristics, immune infiltration, gene mutation, and response to immunotherapy. Subclass C1 was metabolic active with moderate prognosis and associated with glucose, lipid, and protein metabolism. C2 had intermediate metabolic activity with worse prognosis and correlated with more tumor mutation burden, neoantigen, and aneuploidy, indicating possible drug sensitivities towards immune checkpoint inhibitors. Metabolic exhausted subtype C3 showed high cytolytic activity score, suggesting better prognosis than C1 and C2. Moreover, the qRT-PCR was performed to verify the expression of downregulated DERGs including ALDH6A1, ALDH1L1, GLRX5, ALDH1A3, and GSTM3, and upregulated SHMT1 in ccRCC. Overall, our study provides an insight into the characteristics of molecular classification of ccRCC patients based on redox genes, thereby deepening the understanding of heterogeneity of ccRCC and allowing prediction of prognosis of ccRCC patients.


Subject(s)
Carcinoma, Renal Cell/classification , Kidney Neoplasms/classification , Carcinoma, Renal Cell/mortality , Female , Humans , Kidney Neoplasms/mortality , Male , Oxidation-Reduction , Prognosis , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...