Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 717
Filter
1.
Front Cell Infect Microbiol ; 14: 1405627, 2024.
Article in English | MEDLINE | ID: mdl-39015338

ABSTRACT

Introduction: Gejie Zhilao Pill (GJZLP), a traditional Chinese medicine formula is known for its unique therapeutic effects in treating pulmonary tuberculosis. The aim of this study is to further investigate its underlying mechanisms by utilizing network pharmacology and molecular docking techniques. Methods: Using TCMSP database the components, potential targets of GJZLP were identified. Animal-derived components were supplemented through the TCMID and BATMAN-TCM databases. Tuberculosis-related targets were collected from the TTD, OMIM, and GeneCards databases. The intersection target was imported into the String database to build the PPI network. The Metascape platform was employed to carry out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Heatmaps were generated through an online platform (https://www.bioinformatics.com.cn). Molecular docking was conducted between the core targets and core compounds to explore their binding strengths and patterns at the molecular level. Results: 61 active ingredients and 118 therapeutic targets were identified. Quercetin, Luteolin, epigallocatechin gallate, and beta-sitosterol showed relatively high degrees in the network. IL6, TNF, JUN, TP53, IL1B, STAT3, AKT1, RELA, IFNG, and MAPK3 are important core targets. GO and KEGG revealed that the effects of GJZLP on tuberculosis mainly involve reactions to bacterial molecules, lipopolysaccharides, and cytokine stimulation. Key signaling pathways include TNF, IL-17, Toll-like receptor and C-type lectin receptor signaling. Molecular docking analysis demonstrated a robust binding affinity between the core compounds and the core proteins. Stigmasterol exhibited the lowest binding energy with AKT1, indicating the most stable binding interaction. Discussion: This study has delved into the efficacious components and molecular mechanisms of GJZLP in treating tuberculosis, thereby highlighting its potential as a promising therapeutic candidate for the treatment of tuberculosis.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Protein Interaction Maps , Medicine, Chinese Traditional , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Tuberculosis/microbiology , Signal Transduction/drug effects , Animals , Gene Ontology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology
2.
Mater Horiz ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982939

ABSTRACT

Imparting excellent electrical properties, mechanical robustness, suppleness, conduction stability during deformation, and self-healing to intrinsic conducting polymers is a challenging endeavor. The reversibly interlocked macromolecular networks (RILNs) approach is utilized to tackle this problem. Specifically, poly(3,4-ethylenedioxythiophene) (PEDOT) is mixed with flexible polysulfonic acid networks crosslinked by reversible Diels-Alder bonds, while rigid polyaniline networks crosslinked by reversible Schiff base bonds act as molecular staples. Owing to the joint actions of the doping effect of polyaniline on PEDOT, the specific interlocking architecture and synergy between the component materials, the electrical conductivity (59.3-980.5 S cm-1), tensile strength (8.4-81.6 MPa) and elongation at break (44.5-411.0%) of the resultant PEDOT/RILNs films is significantly tunable according to different usage scenarios by adjusting the PEDOT content from 1.48 to 22.24 wt%. More importantly, the electrical resistance of PEDOT/RILNs remains constant during not only a single large extension and deflection but also repeated stretching (up to 1500 cycles) and bending (up to 106 cycles). The built-in reversible covalent bonds enable the PEDOT/RILNs to autonomously restore damaged mechanical and electrical performance. These record-breaking results and the demonstration of self-powered sensor made of PEDOT/RILNs suggest that the proposed approach successfully satisfies various conflicting requirements of flexible electronics regarding the properties of conducting polymers.

4.
Biomed Environ Sci ; 37(5): 494-502, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843922

ABSTRACT

Objective: To explore characteristics of clinical parameters and cytokines in patients with drug-induced liver injury (DILI) caused by different drugs and their correlation with clinical indicators. Method: The study was conducted on patients who were up to Review of Uncertainties in Confidence Assessment for Medical Tests (RUCAM) scoring criteria and clinically diagnosed with DILI. Based on Chinese herbal medicine, cardiovascular drugs, non-steroidal anti-inflammatory drugs (NSAIDs), anti-infective drugs, and other drugs, patients were divided into five groups. Cytokines were measured by Luminex technology. Baseline characteristics of clinical biochemical indicators and cytokines in DILI patients and their correlation were analyzed. Results: 73 patients were enrolled. Age among five groups was statistically different ( P = 0.032). Alanine aminotransferase (ALT) ( P = 0.033) and aspartate aminotransferase (AST) ( P = 0.007) in NSAIDs group were higher than those in chinese herbal medicine group. Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in patients with Chinese herbal medicine (IL-6: P < 0.001; TNF-α: P < 0.001) and cardiovascular medicine (IL-6: P = 0.020; TNF-α: P = 0.001) were lower than those in NSAIDs group. There was a positive correlation between ALT ( r = 0.697, P = 0.025), AST ( r = 0.721, P = 0.019), and IL-6 in NSAIDs group. Conclusion: Older age may be more prone to DILI. Patients with NSAIDs have more severe liver damage in early stages of DILI, TNF-α and IL-6 may partake the inflammatory process of DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Cytokines , Humans , Chemical and Drug Induced Liver Injury/etiology , Male , Female , Middle Aged , Cytokines/blood , Cytokines/metabolism , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Drugs, Chinese Herbal/adverse effects , Alanine Transaminase/blood
5.
Huan Jing Ke Xue ; 45(6): 3708-3715, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897790

ABSTRACT

In order to evaluate the effect of aging and particle size on the adsorption of heavy metals by microplastics, the adsorption behavior of Cu(Ⅱ) by three different particle sizes of polystyrene (PS; 1, 50, and 100 µm) under UV irradiation was systematically studied. The results demonstrated that UV aging significantly changed the surface morphology and physicochemical properties of PS, and 1 µm PS had the strongest aging degree. The adsorption kinetics of PS on Cu(Ⅱ) conformed to the pseudo-second-order kinetic model, and the Freundlich model was more suitable for the experimental data of isothermal adsorption of Cu(Ⅱ) by PS. These results indicated that the adsorption of Cu(Ⅱ) by PS occurred on the non-uniform surface of PS, and the adsorption behavior was multilayer adsorption. Parameter "n" of the Freundlich model was less than 1, indicating that the adsorption behavior of PS on Cu(Ⅱ) was a higher intensity physical adsorption behavior. The order of theoretical maximum adsorption capacity of different particle sizes PS for Cu(Ⅱ) was as follows:1 µm > 50 µm > 100 µm, indicating that the size of PS was an important influence factor for the adsorption capacity of PS to pollutants. For the same particle size PS, aging enhanced its adsorption capacity for Cu(Ⅱ). The results on the adsorption of Cu(Ⅱ) by PS under different environmental conditions indicated that the adsorption capacity of PS for Cu (II) increased with the increase in pH, whereas an increase in salinity had the opposite effect. Surface complexation and electrical adsorption were the main mechanisms of adsorption of Cu(Ⅱ) by PS. This study provides an important scientific basis for understanding the adsorption behavior of microplastics to heavy metals in the environment.

6.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 584-591, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38926374

ABSTRACT

OBJECTIVES: To explore the value of different endoscopic scoring methods in assessing disease activity in pediatric Crohn's disease (CD). METHODS: A total of 70 children diagnosed with CD at the Children's Hospital of Chongqing Medical University from January 2018 to January 2023 were included. Clinical disease activity was assessed using the Pediatric Crohn's Disease Activity Index (PCDAI), while different endoscopic scores were assigned based on endoscopic findings. Spearman rank correlation analysis was used to evaluate the correlation between each endoscopic scoring method and PCDAI as well as laboratory indicators. Kappa test was used to assess the consistency between colonoscopy/capsule endoscopy scoring methods and PCDAI in determining CD activity. Receiver operating characteristic curve analysis was performed to assess the diagnostic efficacy of laboratory indicators in predicting endoscopic activity. RESULTS: The PCDAI score showed a moderate positive correlation with the scores of Crohn's Disease Endoscopic Index of Severity (CDEIS) (rs=0.696, P<0.01), Simple Endoscopic Score for Crohn's Disease (SES-CD) (rs=0.680, P<0.01), Lewis Score (rs=0.540, P<0.01), and Capsule Endoscopy-Crohn's Disease Index (CE-CD) (rs=0.502, P<0.01). The consistency between all endoscopic scoring methods and PCDAI in determining CD activity was poor (Kappa=0.069-0.226). Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), hematocrit (HCT), and serum albumin (ALB) levels showed a moderate correlation with the PCDAI score and the scores of colonoscopy scoring methods (CDEIS and SES-CD) (|rs|=0.581-0.725, P<0.01), but a weak correlation with the scores of capsule scoring methods (P<0.05). ESR and CRP had higher area under the curve (AUC) values in predicting disease activity based on PCDAI, CDEIS, SES-CD, and Lewis Score compared to HCT and ALB (P<0.05). CONCLUSIONS: CDEIS, SES-CD, Lewis Score, and CE-CD can be used to evaluate disease activity in pediatric CD, but they do not fully correspond with disease activity assessed by PCDAI. Elevated levels of ESR and CRP can predict clinical and endoscopic disease activity in children with CD.


Subject(s)
Colonoscopy , Crohn Disease , Severity of Illness Index , Humans , Crohn Disease/diagnosis , Crohn Disease/pathology , Crohn Disease/blood , Child , Male , Female , Adolescent , Child, Preschool , Capsule Endoscopy , C-Reactive Protein/analysis , Blood Sedimentation , ROC Curve
7.
iScience ; 27(6): 109902, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38812540

ABSTRACT

Patients with triple-negative breast cancer (TNBC) frequently experience resistance to chemotherapy, leading to recurrence. The approach of optimizing anti-tumoral immunological effect is promising in overcoming such resistance, given the heterogeneity and lack of biomarkers in TNBC. In this study, we focused on YTHDF2, an N6-methyladenosine (m6A) RNA-reader protein, in macrophages, one of the most abundant intra-tumoral immune cells. Using single-cell sequencing and ex vivo experiments, we discovered that YTHDF2 significantly promotes pro-tumoral phenotype polarization of macrophages and is closely associated with down-regulated antigen-presentation signaling to other immune cells in TNBC. The in vitro deprivation of YTHDF2 favors anti-tumoral effect. Expressions of multiple transcription factors, especially SPI1, were consistently observed in YTHDF2-high macrophages, providing potential therapeutic targets for new strategies. In conclusion, YTHDF2 in macrophages appears to promote pro-tumoral effects while suppressing immune activity, indicating the treatment targeting YTHDF2 or its transcription factors could be a promising strategy for chemoresistant TNBC.

8.
Phytomedicine ; 129: 155613, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703659

ABSTRACT

BACKGROUND: Psychological stress is associated with various diseases including liver dysfunction, yet effective intervention strategies remain lacking due to the unrevealed pathogenesis mechanism. PURPOSE: This study aims to explore the relevance between BMAL1-controlled circadian rhythms and lipoxygenase 15 (ALOX15)-mediated phospholipids peroxidation in psychological stress-induced liver injury, and to investigate whether hepatocyte phospholipid peroxidation signaling is involved in the hepatoprotective effects of a Chinese patent medicine, Pien Tze Huang (PZH). METHODS: Restraint stress models were established to investigate the underlying molecular mechanisms of psychological stress-induced liver injury and the hepatoprotective effects of PZH. Redox lipidomics based on liquid chromatography-tandem mass spectrometry was applied for lipid profiling. RESULTS: The present study discovered that acute restraint stress could induce liver injury. Notably, lipidomic analysis confirmed that phospholipid peroxidation was accumulated in the livers of stressed mice. Additionally, the essential core circadian clock gene Brain and Muscle Arnt-like Protein-1 (Bmal1) was altered in stressed mice. Circadian disruption in mice, as well as BMAL1-overexpression in human HepaRG cells, also appeared to have a significant increase in phospholipid peroxidation, suggesting that stress-induced liver injury is closely related to circadian rhythm and phospholipid peroxidation. Subsequently, arachidonate 15-lipoxygenase (ALOX15), a critical enzyme that contributed to phospholipid peroxidation, was screened as a potential regulatory target of BMAL1. Mechanistically, BMAL1 promoted ALOX15 expression via direct binding to an E-box-like motif in the promoter. Finally, this study revealed that PZH treatment significantly relieved pathological symptoms of psychological stress-induced liver injury with a potential mechanism of alleviating ALOX15-mediated phospholipid peroxidation. CONCLUSION: Our findings illustrate the critical role of BMAL1-triggered phospholipid peroxidation in psychological stress-induced liver injury and provide new insight into treating psychological stress-associated liver diseases by TCM intervention.


Subject(s)
Drugs, Chinese Herbal , Hepatocytes , Lipid Peroxidation , Phospholipids , Stress, Psychological , Animals , Drugs, Chinese Herbal/pharmacology , Hepatocytes/metabolism , Hepatocytes/drug effects , Male , Stress, Psychological/drug therapy , Mice , Lipid Peroxidation/drug effects , Phospholipids/metabolism , Humans , Mice, Inbred C57BL , Signal Transduction/drug effects , Arachidonate 15-Lipoxygenase/metabolism , ARNTL Transcription Factors/metabolism , Circadian Rhythm/drug effects , Liver/metabolism , Liver/drug effects
9.
Schizophr Res ; 267: 519-527, 2024 May.
Article in English | MEDLINE | ID: mdl-38704344

ABSTRACT

BACKGROUND: Previous investigations have revealed substantial differences in neuroimaging characteristics between healthy controls (HCs) and individuals diagnosed with schizophrenia (SCZ). However, we are not entirely sure how brain activity links to symptoms in schizophrenia, and there is a need for reliable brain imaging markers for treatment prediction. METHODS: In this longitudinal study, we examined 56 individuals diagnosed with 56 SCZ and 51 HCs. The SCZ patients underwent a three-month course of antipsychotic treatment. We employed resting-state functional magnetic resonance imaging (fMRI) along with fractional Amplitude of Low Frequency Fluctuations (fALFF) and support vector regression (SVR) methods for data acquisition and subsequent analysis. RESULTS: In this study, we initially noted lower fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, coupled with higher fALFF values in the left hippocampus and right putamen in SCZ patients compared to the HCs at baseline. However, when comparing fALFF values in brain regions with abnormal baseline fALFF values for SCZ patients who completed the follow-up, no significant differences in fALFF values were observed after 3 months of treatment compared to baseline data. The fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, and the left postcentral gyrus were useful in predicting treatment effects. CONCLUSION: Our findings suggest that reduced fALFF values in the sensory-motor networks and increased fALFF values in the limbic system may constitute distinctive neurobiological features in SCZ patients. These findings may serve as potential neuroimaging markers for the prognosis of SCZ patients.


Subject(s)
Antipsychotic Agents , Limbic System , Magnetic Resonance Imaging , Schizophrenia , Humans , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Male , Female , Adult , Antipsychotic Agents/pharmacology , Limbic System/diagnostic imaging , Limbic System/physiopathology , Longitudinal Studies , Young Adult , Treatment Outcome , Outcome Assessment, Health Care , Middle Aged , Support Vector Machine
10.
J Chem Inf Model ; 64(10): 4168-4179, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38745447

ABSTRACT

Hydroxyprolines are abundant in nature and widely utilized by many living organisms. Isomerization of trans-4-hydroxy-d-proline (t4D-HP) to generate 2-amino-4-ketopentanoate has been found to need a glycyl radical enzyme HplG, which catalyzes the cleavage of the C-N bond, while dehydration of trans-4-hydroxy-l-proline involves a homologous enzyme of HplG. Herein, molecular dynamics simulations and quantum mechanics/molecular mechanics (QM/MM) calculations are employed to understand the reaction mechanism of HplG. Two possible reaction pathways of HplG have been explored to decipher the origin of its chemoselectivity. The QM/MM calculations reveal that the isomerization proceeds via an initial hydrogen shift from the Cγ site of t4D-HP to a catalytic cysteine radical, followed by cleavage of the Cδ-N bond in t4D-HP to form a radical intermediate that captures a hydrogen atom from the cysteine. Activation of the Cδ-H bond in t4D-HP to bring about dehydration of t4D-HP possesses an extremely high energy barrier, thus rendering the dehydration pathway implausible in HplG. On the basis of the current calculations, conserved residue Glu429 plays a pivotal role in the isomerization pathway: the hydrogen bonding between it and t4D-HP weakens the hydroxyalkyl Cγ-Hγ bond, and it acts as a proton acceptor to trigger the cleavage of the C-N bond in t4D-HP. Our current QM/MM calculations rationalize the origin of the experimentally observed chemoselectivity of HplG and propose an H-bond-assisted bond activation strategy in radical-containing enzymes. These findings have general implications on radical-mediated enzymatic catalysis and expand our understanding of how nature wisely and selectively activates the C-H bond to modulate catalytic selectivity.


Subject(s)
Cysteine , Glutamic Acid , Molecular Dynamics Simulation , Quantum Theory , Cysteine/chemistry , Cysteine/metabolism , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Free Radicals/chemistry , Free Radicals/metabolism , Hydrogen Bonding
11.
Heliyon ; 10(7): e28397, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571651

ABSTRACT

Graves' ophthalmopathy (GO) is an extrathyroidal manifestation of Graves' disease, Orbital fibroblasts (OFs) are recognized as key players in GO pathogenesis, involved in orbital inflammation, tissue remodeling, and fibrosis. This study offers a primary exploration of cell behavior and characteristics on OFs from GO (GO-OFs), and compared to OFs from healthy control (HC-OFs). Results reveal that GO-OFs exhibit delayed migration from tissue fragments, while no significant difference in cell proliferation is observed between GO-OFs and HC-OFs. Aberrant expression pattern of surface proteins Thy-1, TSHR, and IGF-1R suggests shared autoantigens and pathways between GO and GD, contributing to inflammation and fibrosis. Investigations into cytokine responses unveil elevated secretion of hyaluronic acid (HA) and prostaglandin E2 (PGE2) in GO-OFs, emphasizing their role in tissue remodeling. These findings deepen our understanding of OFs in GO pathogenesis, offering potential therapeutic avenues.

12.
Biomed Environ Sci ; 37(3): 303-314, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38582994

ABSTRACT

Objective: This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40, CD80, CD83, and CD86. Method: This was a cross-sectional study in which patients were divided into a natural history group (namely NH group), a long-term oral nucleoside analogs treatment group (namely NA group), and a plateau-arriving group (namely P group). The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer. Results: In total, 143 patients were enrolled (NH group, n = 49; NA group, n = 47; P group, n = 47). The results demonstrated that CD141/CD1c double negative myeloid dendritic cell (DNmDC)/lymphocytes and monocytes (%) in P group (0.041 [0.024, 0.069]) was significantly lower than that in NH group (0.270 [0.135, 0.407]) and NA group (0.273 [0.150, 0.443]), and CD86 mean fluorescence intensity of DNmDCs in P group (1832.0 [1484.0, 2793.0]) was significantly lower than that in NH group (4316.0 [2958.0, 5169.0]) and NA group (3299.0 [2534.0, 4371.0]), Adjusted P all < 0.001. Conclusion: Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.


Subject(s)
Hepatitis B, Chronic , Humans , Hepatitis B, Chronic/drug therapy , Cross-Sectional Studies , Flow Cytometry , Dendritic Cells , Interferons/metabolism
13.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 275-280, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38686726

ABSTRACT

As the detection rate of pancreatic cystic lesions(PCL)increases,artificial intelligence(AI)has made breakthroughs in the imaging workflow of PCL,including image post-processing,lesion detection,segmentation,diagnosis and differential diagnosis.AI-based image post-processing can optimize the quality of medical images and AI-assisted models for lesion detection,segmentation,diagnosis and differential diagnosis significantly enhance the work efficiency of radiologists.This article reviews the application progress of AI in PCL imaging and provides prospects for future research directions.


Subject(s)
Artificial Intelligence , Pancreatic Cyst , Humans , Pancreatic Cyst/diagnostic imaging , Diagnosis, Differential , Image Processing, Computer-Assisted/methods , Pancreatic Neoplasms/diagnostic imaging
14.
Int J Hyg Environ Health ; 259: 114383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652942

ABSTRACT

Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 µg/gcrea and 2.5 µg/gcrea in Guangzhou, and 93.7 µg/gcrea and 2.9 µg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.


Subject(s)
Endocrine Disruptors , Environmental Exposure , Environmental Pollutants , Life Style , Phthalic Acids , Humans , Endocrine Disruptors/urine , Child , Child, Preschool , Male , Female , Environmental Exposure/analysis , China , Phthalic Acids/urine , Environmental Pollutants/urine , Phenols/urine , Adult , Hong Kong , Parents , Benzhydryl Compounds/urine , East Asian People
15.
Animals (Basel) ; 14(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672351

ABSTRACT

Decapterus maruadsi is a typical representative of small pelagic fish characterized by fast growth rate, small body size, and high fecundity. It is a high-quality marine commercial fish with high nutritional value. However, the underlying genetics and genomics research focused on D. maruadsi is not comprehensive. Herein, a high-quality chromosome-level genome of a male D. maruadsi was assembled. The assembled genome length was 716.13 Mb with contig N50 of 19.70 Mb. Notably, we successfully anchored 95.73% contig sequences into 23 chromosomes with a total length of 685.54 Mb and a scaffold N50 of 30.77 Mb. A total of 22,716 protein-coding genes, 274.90 Mb repeat sequences, and 10,060 ncRNAs were predicted, among which 22,037 (97%) genes were successfully functionally annotated. The comparative genome analysis identified 459 unique, 73 expanded, and 52 contracted gene families. Moreover, 2804 genes were identified as candidates for positive selection, of which some that were related to the growth and development of bone, muscle, cardioid, and ovaries, such as some members of the TGF-ß superfamily, were likely involved in the evolution of typical biological features in D. maruadsi. The study provides an accurate and complete chromosome-level reference genome for further genetic conservation, genomic-assisted breeding, and adaptive evolution research for D. maruadsi.

16.
Pharmacol Res ; 203: 107164, 2024 May.
Article in English | MEDLINE | ID: mdl-38569981

ABSTRACT

The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.


Subject(s)
Cardiovascular Diseases , Mitochondrial Proteins , Muscle Proteins , Humans , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Muscle Proteins/metabolism , Muscle Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects
17.
World J Gastroenterol ; 30(11): 1533-1544, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38617449

ABSTRACT

BACKGROUND: Patients with liver cancer complicated by portal hypertension present complex challenges in treatment. AIM: To evaluate the efficacy of radiofrequency ablation in combination with sorafenib for improving liver function and its impact on the prognosis of patients with this condition. METHODS: Data from 100 patients with liver cancer complicated with portal hypertension from May 2014 to March 2019 were analyzed and divided into a study group (n = 50) and a control group (n = 50) according to the treatment regimen. The research group received radiofrequency ablation (RFA) in combination with sorafenib, and the control group only received RFA. The short-term efficacy of both the research and control groups was observed. Liver function and portal hypertension were compared before and after treatment. Alpha-fetoprotein (AFP), glypican-3 (GPC-3), and AFP-L3 levels were compared between the two groups prior to and after treatment. The occurrence of adverse reactions in both groups was observed. The 3-year survival rate was compared between the two groups. Basic data were compared between the survival and non-surviving groups. To identify the independent risk factors for poor prognosis in patients with liver cancer complicated by portal hypertension, multivariate logistic regression analysis was employed. RESULTS: When comparing the two groups, the research group's total effective rate (82.00%) was significantly greater than that of the control group (56.00%; P < 0.05). Following treatment, alanine aminotransferase and aspartate aminotransferase levels increased, and portal vein pressure decreased in both groups. The degree of improvement for every index was substantially greater in the research group than in the control group (P < 0.05). Following treatment, the AFP, GPC-3, and AFP-L3 levels in both groups decreased, with the research group having significantly lower levels than the control group (P < 0.05). The incidence of diarrhea, rash, nausea and vomiting, and fatigue in the research group was significantly greater than that in the control group (P < 0.05). The 1-, 2-, and 3-year survival rates of the research group (94.00%, 84.00%, and 72.00%, respectively) were significantly greater than those of the control group (80.00%, 64.00%, and 40.00%, respectively; P < 0.05). Significant differences were observed between the survival group and the non-surviving group in terms of Child-Pugh grade, history of hepatitis, number of tumors, tumor size, use of sorafenib, stage of liver cancer, histological differentiation, history of splenectomy and other basic data (P < 0.05). Logistic regression analysis demonstrated that high Child-Pugh grade, tumor size (6-10 cm), history of hepatitis, no use of sorafenib, liver cancer stage IIIC, and previous splenectomy were independent risk factors for poor prognosis in patients with liver cancer complicated with portal hypertension (P < 0.05). CONCLUSION: Patients suffering from liver cancer complicated by portal hypertension benefit from the combination of RFA and sorafenib therapy because it effectively restores liver function and increases survival rates. The prognosis of patients suffering from liver cancer complicated by portal hypertension is strongly associated with factors such as high Child-Pugh grade, tumor size (6-10 cm), history of hepatitis, lack of sorafenib use, liver cancer at stage IIIC, and prior splenectomy.


Subject(s)
Hepatitis A , Hypertension, Portal , Liver Neoplasms , Humans , Prognosis , Sorafenib/therapeutic use , alpha-Fetoproteins , Liver Neoplasms/complications , Liver Neoplasms/surgery , Hypertension, Portal/complications
18.
Nanoscale ; 16(18): 8708-8738, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38634521

ABSTRACT

Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.


Subject(s)
Cell Membrane , Immunotherapy , Nanoparticles , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Cell Membrane/metabolism , Cell Membrane/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Animals , Tumor Microenvironment/drug effects
19.
PeerJ ; 12: e16927, 2024.
Article in English | MEDLINE | ID: mdl-38464749

ABSTRACT

Background: COVID-19 is a severe infectious disease caused by the SARS-CoV-2 virus, and previous studies have shown that patients with kidney renal clear cell carcinoma (KIRC) are more susceptible to SARS-CoV-2 infection than the general population. Nevertheless, their co-pathogenesis remains incompletely elucidated. Methods: We obtained shared genes between these two diseases based on public datasets, constructed a prognostic risk model consisting of hub genes, and validated the accuracy of the model using internal and external validation sets. We further analyzed the immune landscape of the prognostic risk model, investigated the biological functions of the hub genes, and detected their expression in renal cell carcinoma cells using qPCR. Finally, we searched the candidate drugs associated with hub gene-related targets from DSigDB and CellMiner databases. Results: We obtained 156 shared genes between KIRC and COVID-19 and constructed a prognostic risk model consisting of four hub genes. Both shared genes and hub genes were highly enriched in immune-related functions and pathways. Hub genes were significantly overexpressed in COVID-19 and KIRC. ROC curves, nomograms, etc., showed the reliability and robustness of the risk model, which was validated in both internal and external datasets. Moreover, patients in the high-risk group showed a higher proportion of immune cells, higher expression of immune checkpoint genes, and more active immune-related functions. Finally, we identified promising drugs for COVID-19 and KIRC, such as etoposide, fulvestrant, and topotecan. Conclusion: This study identified and validated four shared genes for KIRC and COVID-19. These genes are associated with immune functions and may serve as potential prognostic biomarkers for KIRC. The shared pathways and genes may provide new insights for further mechanistic research and treatment of comorbidities.


Subject(s)
COVID-19 , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Carcinoma, Renal Cell/genetics , Reproducibility of Results , Kidney Neoplasms/genetics , Kidney
20.
Discov Nano ; 19(1): 39, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436896

ABSTRACT

Organic solar cells (OSCs) are considered as a crucial energy source for flexible and wearable electronics. Pseudo-planar heterojunction (PPHJ) OSCs simplify the solution preparation and morphology control. However, non-halogenated solvent-printed PPHJ often have an undesirable vertical component distribution and insufficient donor/acceptor interfaces. Additionally, the inherent brittleness of non-fullerene small molecule acceptors (NFSMAs) in PPHJ leads to poor flexibility, and the NFSMAs solution shows inadequate viscosity during the printing of acceptor layer. Herein, we propose a novel approach termed polymer-incorporated pseudo-planar heterojunction (PiPPHJ), wherein a small amount of polymer donor is introduced into the NFSMAs layer. Our findings demonstrate that the incorporation of polymer increases the viscosity of acceptor solution, thereby improving the blade-coating processability and overall film quality. Simultaneously, this strategy effectively modulates the vertical component distribution, resulting in more donor/acceptor interfaces and an improved power conversion efficiency of 17.26%. Furthermore, PiPPHJ-based films exhibit superior tensile properties, with a crack onset strain of 12.0%, surpassing PPHJ-based films (9.6%). Consequently, large-area (1 cm2) flexible devices achieve a considerable efficiency of 13.30% and maintain excellent mechanical flexibility with 82% of the initial efficiency after 1000 bending cycles. These findings underscore the significant potential of PiPPHJ-based OSCs in flexible and wearable electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...