Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Hemorheol Microcirc ; 81(1): 13-21, 2022.
Article in English | MEDLINE | ID: mdl-35068450

ABSTRACT

OBJECTIVES: To compare the diagnostic value of shear wave elastography (SWE), fine needle aspiration (FNA) and BRAF gene detection (BRAFV600E gene mutation detection) in ACR TI-RADS 4 and 5 thyroid nodules. METHODS: SWE images, FNA cytological results and BRAF detection results of ACR TI-RADS 4 and 5 thyroid nodules confirmed by pathology were analyzed retrospectively. The receiver operating characteristic (ROC) curve was drawn to determine the best cutoff value of SWE Emax. In the combined diagnosis of SWE, FNA and BRAF, firstly, the nodules with BRAF gene mutation were included in the positive ones, secondly, the nodules with benign and malignant FNA were included in the FNA + SWE or FNA + SWE + BRAF negative and positive ones respectively, finally, for FNA uncertain nodules: those whose SWE Emax were less than or equal to the cutoff value were included in FNA + SWE or FNA + SWE + BRAF negative ones, and those whose SWE Emax were greater than the cutoff value were included in positive ones. The diagnostic efficacy of SWE, FNA, SWE + FNA, FNA + BRAF and their combination in ACR TI-RADS 4 and 5 thyroid nodules were compared. RESULTS: The ROC curve showed that the best cutoff value of SWE Emax was 40.9 kpa, and the area under ROC curve (AUC) was 0.842 (0.800∼0.885). The sensitivity, specificity and accuracy of SWE were 76.3% (270/354), 75.5% (80/106) and 76.1% (350/460), respectively. The sensitivity, specificity and accuracy of FNA were 58.2% (206/354), 88.7% (94/106) and 65.2(300/460), respectively. The sensitivity, specificity and accuracy of FNA + BRAF were 95.5% (338/354), 88.7% (94/106) and 93.9% (432/460), respectively. The sensitivity, specificity and accuracy of SWE + FNA were 85.9% (304/354), 98.1% (104/106) and 88.7% (408/460), respectively. The sensitivity, specificity and accuracy of SWE + FNA + BRAF were 98.3% (348/354), 98.1% (104/106) and 98.3% (452/460), respectively. For the diagnostic accuracy, SWE + FNA + BRAF > FNA + BRAF > FNA + SWE > SWE > FNA, the difference was statistically significant (all P > 0.05). CONCLUSIONS: For ACR TI-RADS 4 and 5 thyroid nodules, SWE and FNA have high diagnostic efficiency. For the diagnostic accuracy, FNA + BRAF is better than FNA + SWE. FNA combination with BRAF gene detection further improves the diagnostic sensitivity and accuracy of FNA. The combined application of the three is the best.


Subject(s)
Elasticity Imaging Techniques , Thyroid Nodule , Biopsy, Fine-Needle/methods , Elasticity Imaging Techniques/methods , Humans , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/genetics , Ultrasonography/methods
2.
Clin Hemorheol Microcirc ; 78(2): 163-174, 2021.
Article in English | MEDLINE | ID: mdl-33579829

ABSTRACT

OBJECTIVE: To compare the diagnostic efficacy of ACR TI-RADS, Kwak TI-RADS, ATA guidelines and KTA/KSThR guidelines in combination with shear wave elastography (SWE) for thyroid nodules. METHODS: The retrospective study included 566 thyroid nodules with maximum diameter≥5 mm which confirmed by FNA cytology or/and surgical pathology. The sensitivity, specificity, accuracy, Youden index of diagnosis of thyroid nodules by ACR TI-RADS, Kwak TI-RADS, ATA guidelines, KTA/KSThR guidelines and SWE were calculated. The ROC curve was drawn to determine the cut-off values of the four ultrasound classification systems and SWE Emax. The diagnostic efficacy of the four ultrasound classification systems in combination with SWE were calculated and compared with those of pre-combination. RESULTS: The ROC curves indicated that the cut-off value of ACR TI-RADS, Kwak TI-RADS, ATA guidelines, KTA/KSThR guidelines and Emax of SWE was TR5, 4c, high-suspicion, high-suspicion, and 41.7 kPa, respectively, and the area under the ROC curve (AUC) was 0.907(0.879-0.934), 0904(0.876-0.932), 0.894(0.863-0.924), 0.888(0.856-0.919), 0.886(0.859-0.913), respectively. After combination with SWE, the the sensitivities of the four ultrasound classification systems for the diagnosis of nodules were improved, and the differences were statistically significant (all P≤0.001); the specificities were decreased, but the differences were not statistically significant (all P > 0.05); the accuracies were improved, but only the difference of ACR TI-RADS was statistically significant (x2 = 4.45, P = 0.035); the differences in the AUCs were not significant (all P > 0.05). CONCLUSIONS: The four ultrasound classification systems and SWE all had high performance in the diagnosis of thyroid nodules. The four classification systems in combination with SWE were all beneficial to the differential diagnosis of nodules, and ACR TI-RADS in combination with SWE was more effective, especially for TR3 and TR4 nodules.


Subject(s)
Elasticity Imaging Techniques/methods , Practice Guidelines as Topic/standards , Thyroid Nodule/diagnosis , Ultrasonography/methods , Adult , Area Under Curve , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Retrospective Studies , Thyroid Nodule/classification , Thyroid Nodule/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...