Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 275: 116558, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38870833

ABSTRACT

The aberrant activation of FGFRs plays a critical role in various cancers, leading to the development of several FGFR inhibitors in clinic. However, the emergence of drug resistance, primarily due to gatekeeper mutations in FGFRs, has limited their clinical efficacy. To address the unmet medical need, a series of 5-amino-1H-pyrazole-4-carboxamide derivatives were designed and synthesized as novel pan-FGFR covalent inhibitors targeting both wild-type and the gatekeeper mutants. The representative compound 10h demonstrated nanomolar activities against FGFR1, FGFR2, FGFR3 and FGFR2 V564F gatekeeper mutant in biochemical assays (IC50 = 46, 41, 99, and 62 nM). Moreover, 10h also strongly suppressed the proliferation of NCI-H520 lung cancer cells, SNU-16 and KATO III gastric cancer cells with IC50 values of 19, 59, and 73 nM, respectively. Further X-ray co-crystal structure revealed that 10h irreversibly binds to FGFR1. The study provides a new promising point for anticancer drug development medicated by FGFRs.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Design , Pyrazoles , Receptors, Fibroblast Growth Factor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Models, Molecular , Molecular Structure , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/metabolism , Structure-Activity Relationship , /chemistry , /pharmacology
2.
J Med Chem ; 65(21): 14809-14831, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36278929

ABSTRACT

The FGF19-FGFR4 signaling pathway has been extensively studied as a promising target for the treatment of hepatocellular carcinoma (HCC). Several FGFR4-selective inhibitors have been developed, but none of them receives approval. Additionally, acquired resistance caused by FGFR4 gatekeeper mutations is emerging as a serious limitation for these targeted therapies. Herein, we report a novel series of 5-formyl-pyrrolo[3,2-b]pyridine derivatives as new reversible-covalent inhibitors targeting wild-type and gatekeeper mutant variants of FGFR4 kinase. The representative compound 10z exhibited single-digit nanomolar activity against wild-type FGFR4 and the FGFR4V550L/M mutant variants in biochemical and Ba/F3 cellular assays, while sparing FGFR1/2/3. Furthermore, 10z showed significant antiproliferative activity against Hep3B, JHH-7, and HuH-7 HCC cells with IC50 values of 37, 32, and 94 nM, respectively. MALDI-TOF-MS and X-ray protein crystallography studies were consistent with 10z acting as a reversible-covalent inhibitor of FGFR4, serving as a promising lead compound for further anticancer drug development.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Liver Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Pyridines/pharmacology , Pyridines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 4 , Signal Transduction
3.
ACS Med Chem Lett ; 12(4): 647-652, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33859803

ABSTRACT

Covalent kinase inhibitors are rapidly emerging as a class of therapeutics with clinical benefits. Herein we report a series of selective 2-aminopyrimidine-based fibroblast growth factor receptor 4 (FGFR4) inhibitors exploring different types of cysteine-targeting warheads. The structure-activity relationship study revealed that the chemically tuned warheads α-fluoro acrylamide, vinylsulfonamide, and acetaldehyde amine were suitable as covalent warheads for the design of selective FGFR4 inhibitors. Compounds 6a, 6h, and 6i selectively suppressed FGFR4 enzymatic activity with IC50 values of 53 ± 18, 45 ± 11, and 16 ± 4 nM, respectively, while sparing FGFR1/2/3. X-ray crystal structure and MALDI-TOF studies demonstrated that compound 6h bearing the α-fluoro acrylamide binds to FGFR4 with an irreversible binding mode, whereas compound 6i with an acetaldehyde amine binds to FGFR4 with a reversible covalent mode. 6h and 6i might provide some fundamental structural information for the rational design of new selective FGFR4 inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...