Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(25): e202403015, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38623043

ABSTRACT

Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.

2.
Adv Mater ; 36(19): e2312805, 2024 May.
Article in English | MEDLINE | ID: mdl-38319917

ABSTRACT

Incorporating flexible insulating polymers is a straightforward strategy to enhance the mechanical properties of rigid conjugated polymers, enabling their use in flexible electronic devices. However, maintaining electronic characteristics simultaneously is challenging due to the poor miscibility between insulating polymers and conjugated polymers. This study introduces the carboxylation of insulating polymers as an effective strategy to enhance miscibility with conjugated polymers via surface energy modulation and hydrogen bonding. The carboxylated elastomer, synthesized via a thiol-ene click reaction, closely matches the surface energy of the conjugated polymer. This significantly improves the mechanical properties, achieving a high crack-onset strain of 21.48%, surpassing that (5.93%) of the unmodified elastomer:conjugated polymer blend. Upon incorporating the carboxylated elastomer into PM6:L8-BO-based organic solar cells, an impressive power conversion efficiency of 19.04% is attained, which top-performs among insulating polymer-incorporated devices and outperforms devices with unmodified elastomer or neat PM6:L8-BO. The superior efficiency is attributed to the optimized microstructures and enhanced crystallinity for efficient and balanced charge transport, and suppressed charge recombination. Furthermore, flexible devices with 5% carboxylated elastomer exhibit superior mechanical stability, retaining ≈88.9% of the initial efficiency after 40 000 bending cycles at a 1 mm radius, surpassing ≈83.5% for devices with 5% unmodified elastomer.

3.
Small ; 19(52): e2304996, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635097

ABSTRACT

Both ternary copolymerization and ternary blending are effective methods to fine-tune polymer structure and manipulate thin-film morphology to improve device performance. In this work, three D-A-A-A (D: donor, A: acceptor) terpolymer donors (FY1, FY2, and FY3) are synthesized by introducing BDD (1,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione) units into the D-A alternating copolymer PM6 backbone. Owing to the promoted conjugated planarity and excellent absorption of BDD, the obtained terpolymers display an extended absorption range and enhanced π-π stacking orientation, which is a promising third component in ternary device. As a result, the optimal FY1:PM6:BTP-eC9-based ternary device afforded an impressive power conversion efficiency (PCE) as high as 18.52%, owing to the efficient charge transport, negligible energy loss, and suitable domain size. The result provides an efficient method to obtain high-performance polymer solar cells by using analogous polymer donors in ternary device.

4.
Chem Commun (Camb) ; 58(84): 11823-11826, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36190499

ABSTRACT

Novel terpolymers were developed with ester group incorporation (BDT-2EST). DM1 with 5% BDT-2EST possesses suitable crystallinity and miscibility matching with Y6 acceptor to offer an excellent power conversation efficiency up to 17.21%. Moreover, the intertwined random features in DM1 offer robust photovoltaic performances with a broad molecular weight tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...