Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
ACS Appl Mater Interfaces ; 16(25): 32481-32489, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875075

ABSTRACT

Rational control of the supramolecular aggregation of π-conjugated molecules plays an important role in determining their optoelectronic properties and applications. Here, we report a systematic study of the factors, including solvent polarity, concentration, and surfactants, that affect the aggregation behavior of a brominated hydroazaheptacene tetraimide (HATI) and its thiophene-substituted derivative, Th-HATI, as near-infrared fluorophores, in both nonpolar and polar solvents. The thermal stability of the aggregates is also studied by monitoring their optical absorption against temperature change. Our results indicate that the aggregation of HATI is highly sensitive to the solvent polarity. Moreover, the average aggregation number of HATI inside the colloidal nanoparticles formed in aqueous media can be controlled by surfactants. The substitution of the bromo groups in HATI by thiophene units induces a slight blue shift of the optical absorption, enhanced crystallinity, distinct aggregation behavior in both nonpolar and polar solvents, and improved thermal stability. The multifacet understanding of the supramolecular aggregation of these systems may offer insight for other π-conjugated molecular chromophores with various optoelectronic properties and applications.

2.
Article in English | MEDLINE | ID: mdl-38498735

ABSTRACT

Identifying unseen faults is a crux of the digital transformation of process manufacturing. The ever-changing manufacturing process requires preset models to cope with unseen problems. However, most current works focus on recognizing objects seen during the training phase. Conventional zero-shot recognition methods perform poorly when they are applied directly to these tasks due to the different scenarios and limited generalizability. This article yields a tensor-based zero-shot fault diagnosis framework, termed MetaEvolver, which is dedicated to improving fault diagnosis accuracy and unseen domain generalizability for practical process manufacturing scenarios. MetaEvolver learns to evolve the dual prototype distributions for each uncertain meta-domain from seen faults and then adapt to unseen faults. We first propose the concept of the uncertain meta-domain and then construct corresponding sample prototypes with the guidance of class-level attributes, which produce the sample-attribute alignment at the prototype level. MetaEvolver further collaboratively evolves the uncertain meta-domain dual prototypes by injecting the prototype distribution information of another modality, boosting the sample-attribute alignment at the distribution level. Building on the uncertain meta-domain strategy, MetaEvolver is prone to achieving knowledge transferring and unseen domain generalization with the optimization of several devised loss functions. Comprehensive experimental results on five process manufacturing data groups and five zero-shot benchmarks demonstrate that our MetaEvolver has great superiority and potential to tackle zero-shot fault diagnosis for smart process manufacturing.

3.
Chemistry ; 30(13): e202303740, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38149886

ABSTRACT

Molecular switches that reversibly change their structures and physical properties are important for applications such as sensing and information processing at molecular scales. In order to avoid the intermolecular aggregation that is often detrimental to the stimuli-responses of molecular switches, previous studies of molecular switches have been often conducted in dilute solutions which are difficult for applications in solid-state devices. Here we report molecular design and synthesis that integrates anthraquinodimethane as molecular switching units into polymers with amenable processibility in solid states. Optical and electron spin resonance characterizations indicate that the four-arm polymers of poly(ϵ-caprolactone) or poly(D,L-lactide) tethered from anthraquinodimethane slow down the dynamics of the conformational switching between the folded and the twisted conformations, enhance the photoluminescence in solid states and impart materials with a small energy gap from singlet ground state to thermally accessible triplet state.

4.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077191

ABSTRACT

Phosphatidic acid (PA) is an important signal molecule in various biological processes including osmotic stress. Lysophosphatidic acid acyltransferase (LPAT) acylates the sn-2 position of the glycerol backbone of lysophosphatidic acid (LPA) to produce PA. The role of LPAT2 and its PA in osmotic stress response remains elusive in plants. Here we showed that LPAT2-derived PA is important for salt and drought stress tolerance in rice. Rice LPAT2 was localized to the endoplasmic reticulum (ER) to catalyze the PA synthesis. The LPAT2 transcript was induced by osmotic stress such as high salinity and water deficit. To reveal its role in osmotic stress response, an LPAT2 knockdown mutant, designated lpat2, was isolated from rice, which contained a reduced PA level relative to wild type (WT) plants under salt stress and water deficit. The lpat2 mutant was more susceptible to osmotic stress and less sensitive to abscisic acid (ABA) than that of WT, which was recovered by either PA supplementation or genetic LPAT2 complementation. Moreover, suppressed LPAT2 also led to a large number of differentially expressed genes (DEGs) involved in diverse processes, particularly, in ABA response, kinase signaling, and ion homeostasis in response to salt stress. Together, LPAT2-produced PA plays a positive role in osmotic tolerance through mediating ABA response, which leads to transcriptional alteration of genes related to ABA response, protein kinase signaling, and ion homeostasis.


Subject(s)
Oryza , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Acyltransferases , Droughts , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological , Water/metabolism
5.
EMBO Rep ; 22(10): e51871, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34396669

ABSTRACT

Phospholipase D (PLD) hydrolyzes membrane lipids to produce phosphatidic acid (PA), a lipid mediator involved in various cellular and physiological processes. Here, we show that PLDα6 and PA regulate the distribution of GIBBERELLIN (GA)-INSENSITIVE DWARF1 (GID1), a soluble gibberellin receptor in rice. PLDα6-knockout (KO) plants display less sensitivity to GA than WT, and PA restores the mutant to a normal GA response. PA binds to GID1, as documented by liposome binding, fat immunoblotting, and surface plasmon resonance. Arginines 79 and 82 of GID1 are two key amino acid residues required for PA binding and also for GID1's nuclear localization. The loss of PLDα6 impedes GA-induced nuclear localization of GID1. In addition, PLDα6-KO plants attenuated GA-induced degradation of the DELLA protein SLENDER RICE1 (SLR1). These data suggest that PLDα6 and PA positively mediate GA signaling in rice via PA binding to GID1 and promotion of its nuclear translocation.


Subject(s)
Gibberellins , Oryza , Gene Expression Regulation, Plant , Mutation , Oryza/genetics , Phosphatidic Acids , Phospholipases , Plant Growth Regulators , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
6.
Genomics ; 113(4): 2085-2095, 2021 07.
Article in English | MEDLINE | ID: mdl-33895283

ABSTRACT

The present study used soils contaminated with Fusarium oxysporum f. sp. capsici (CCS) and CCS amended with bamboo biochar (CCS + BC) to grow the pepper variety Qujiao No.1. The physiological performance, and transcriptome and metabolome profiling in leaf (L) and fruit (F) of Qujiao No.1 were conducted. Application of biochar improved soil properties, pepper plant nutrition and increased activities of enzymes related to pest/disease resistance, leading to superior physiological performance and lesser F. wilt disease incidence than plants from CCS. Most of the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were involved in protein processing in endoplasmic reticulum (fruit), plant pathogen interaction (fruit), photosynthesis (leaf), phenylpropanoid biosynthesis (both tissues) and metabolic pathways (both tissues). Biochar improved plant photosynthesis, enhanced the immune system, energy production and increased stress signaling pathways. Overall, our results provide evidence of a number of pathways induced by biochar in pepper regulating its response to F. wilt disease.


Subject(s)
Fusarium , Sasa , Charcoal , Fusarium/genetics , Metabolome , Plant Diseases/genetics , Sasa/genetics , Transcriptome
7.
New Phytol ; 223(1): 261-276, 2019 07.
Article in English | MEDLINE | ID: mdl-30887532

ABSTRACT

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA), and both DAG and PA are lipid mediators in the cell. Here we show that DGK1 in rice (Oryza sativa) plays important roles in root growth and development. Two independent OsDGK1-knockout (dgk1) lines exhibited a higher density of lateral roots (LRs) and thinner seminal roots (SRs), whereas OsDGK1-overexpressing plants displayed a lower LR density and thicker SRs than wild-type (WT) plants. Overexpression of OsDGK1 led to a decline in the DGK substrate DAG whereas specific PA species decreased in dgk1 roots. Supplementation of DAG to OsDGK1-overexpressing seedlings restored the LR density and SR thickness whereas application of PA to dgk1 seedlings restored the LR density and SR thickness to those of the WT. In addition, treatment of rice seedlings with the DGK inhibitor R59022 increased the level of DAG and decreased PA, which also restored the root phenotype of OsDGK1-overexpressing seedlings close to that of the WT. Together, these results indicate that DGK1 and associated lipid mediators modulate rice root architecture; DAG promotes LR formation and suppresses SR growth whereas PA suppresses LR number and promotes SR thickness.


Subject(s)
Diacylglycerol Kinase/metabolism , Lipid Metabolism , Oryza/enzymology , Plant Roots/anatomy & histology , Plant Roots/enzymology , Diacylglycerol Kinase/genetics , Diglycerides/metabolism , Gene Expression Regulation, Plant , Homozygote , Models, Biological , Mutation/genetics , Oryza/genetics , Phosphatidic Acids/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , Transcriptome/genetics
8.
Plant Cell Environ ; 42(2): 536-548, 2019 02.
Article in English | MEDLINE | ID: mdl-30175516

ABSTRACT

Phosphatidylinositol-specific phospholipase C (PI-PLC) is involved in stress signalling but its signalling function remains largely unknown in crop plants. Here, we report that the PI-PLC4 from rice (Oryza sativa cv), OsPLC4, plays a positive role in osmotic stress response. Two independent knockout mutants, plc4-1 and plc4-2, exhibited decreased seedling growth and survival rate whereas overexpression of OsPLC4 improved survival rate under high salinity and water deficiency, compared with wild type (WT). OsPLC4 hydrolyses PI, phosphatidylinositol 4-phosphate (PI4P), and phosphatidylinositol-4,5-bisphosphate (PIP2 ) to generate diacylglycerol (DAG) in vitro. Knockout of OsPLC4 attenuated salt-induced increase of phosphatidic acid (PA) whereas overexpression of OsPLC4 decreased the level of PI4P and PIP2 under salt treatment. Applications of DAG or PA restored the growth defect of plc4-1 to WT but DAG kinase inhibitor 1 blocked the complementary effect of DAG in plc4-1 under salt stress. In addition, the loss of OsPLC4 compromised the increase of inositol triphosphate and free cytoplasmic Ca2+ ([Ca2+ ]cyt ) and inhibited the induction of genes involved in Ca2+ sensor and osmotic stress response to salt stress. The results indicate that OsPLC4 modulates the activity of two signalling pathways, PA and Ca2+ , to affect rice seedling response to osmotic stress.


Subject(s)
Oryza/physiology , Phosphoinositide Phospholipase C/metabolism , Plant Proteins/metabolism , Dehydration , Gene Knockout Techniques , Hydrolysis , Oryza/enzymology , Oryza/metabolism , Osmotic Pressure , Phosphatidylinositols/metabolism , Phosphoinositide Phospholipase C/physiology , Plant Proteins/physiology , Real-Time Polymerase Chain Reaction , Salt Stress/physiology
9.
Prog Lipid Res ; 62: 55-74, 2016 04.
Article in English | MEDLINE | ID: mdl-26783886

ABSTRACT

Phospholipases D (PLD) and C (PLC) hydrolyze the phosphodiesteric linkages of the head group of membrane phospholipids. PLDs and PLCs in plants occur in different forms: the calcium-dependent phospholipid binding domain-containing PLDs (C2-PLDs), the plekstrin homology and phox homology domain-containing PLDs (PX/PH-PLDs), phosphoinositide-specific PLC (PI-PLC), and non-specific PLC (NPC). They differ in structures, substrate selectivities, cofactor requirements, and/or reaction conditions. These enzymes and their reaction products, such as phosphatidic acid (PA), diacylglycerol (DAG), and inositol polyphosphates, play important, multifaceted roles in plant response to abiotic and biotic stresses. Here, we review biochemical properties, cellular effects, and physiological functions of PLDs and PLCs, particularly in the context of their roles in stress response along with advances made on the role of PA and DAG in cell signaling in plants. The mechanism of actions, including those common and distinguishable among different PLDs and PLCs, will also be discussed.


Subject(s)
Phospholipase D/metabolism , Plants/enzymology , Type C Phospholipases/metabolism , Diglycerides/metabolism , Phosphatidic Acids/metabolism , Plant Proteins/metabolism , Signal Transduction , Stress, Physiological
10.
J Exp Bot ; 66(21): 6945-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26290597

ABSTRACT

Patatin-related phospholipase A (pPLA) hydrolyses glycerolipids to produce fatty acids and lysoglycerolipids. The Oryza sativa genome has 21 putative pPLAs that are grouped into five subfamilies. Overexpression of OspPLAIIIα resulted in a dwarf phenotype with decreased length of rice stems, roots, leaves, seeds, panicles, and seeds, whereas OspPLAIIIα-knockout plants had longer panicles and seeds. OspPLAIIIα-overexpressing plants were less sensitive than wild-type and knockout plants to gibberellin-promoted seedling elongation. OspPLAIIIα overexpression and knockout had an opposite effect on the expression of the growth repressor SLENDER1 in the gibberellin signalling process. OspPLAIIIα-overexpressing plants had decreased mechanical strength and cellulose content, but exhibited increases in the expression of several cellulose synthase genes. These results indicate that OspPLAIIIα plays a role in rice vegetative and reproductive growth and that the constitutive, high activity of OspPLAIIIα suppresses cell elongation. The decreased gibberellin response in overexpressing plants is probably a result of the decreased ability to make cellulose for anisotropic cell expansion.


Subject(s)
Gene Expression Regulation, Plant , Oryza/growth & development , Oryza/genetics , Phospholipases A/genetics , Plant Proteins/genetics , Amino Acid Sequence , Gene Expression Regulation, Developmental , Gibberellins/metabolism , Oryza/metabolism , Phospholipases A/chemistry , Phospholipases A/metabolism , Phylogeny , Plant Growth Regulators/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...