Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Chem Pharm Bull (Tokyo) ; 72(7): 669-675, 2024.
Article in English | MEDLINE | ID: mdl-39010213

ABSTRACT

Tendon injury is a prevalent orthopedic disease that currently lacks effective treatment. Galangin (GLN) is a vital flavonoid found abundantly in galangal and is known for its natural activity. This study aimed to investigate the GLN-mediated molecular mechanism of tendon-derived stem cells (TDSCs) in tendon repair. The TDSCs were characterized using alkaline phosphatase staining, alizarin red S staining, oil red O staining, and flow cytometry. The effect of GLN treatment on collagen deposition was evaluated using Sirius red staining and quantitative (q)PCR, while a Western bot was used to assess protein levels and analyze pathways. Results showed that GLN treatment not only increased the collagen deposition but also elevated the mRNA expression and protein levels of multiple tendon markers like collagen type I alpha 1 (COL1A1), decorin (DCN) and tenomodulin (TNMD) in TDSCs. Moreover, GLN was also found to upregulate the protein levels of transforming growth factor ß1 (TGF-ß1) and p-Smad3 to activate the TGF-ß1/Smad3 signaling pathway, while GLN mediated collagen deposition in TDSCs was reversed by LY3200882, a TGF-ß receptor inhibitor. The study concluded that GLN-mediated TDSCs enhanced tendon repair by activating the TGF-ß1/Smad3 signaling pathway, suggesting a novel therapeutic option in treating tendon repair.


Subject(s)
Flavonoids , Signal Transduction , Smad3 Protein , Stem Cells , Tendons , Transforming Growth Factor beta1 , Flavonoids/pharmacology , Flavonoids/chemistry , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Animals , Smad3 Protein/metabolism , Smad3 Protein/antagonists & inhibitors , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Tendons/cytology , Tendons/metabolism , Tendons/drug effects , Rats , Cells, Cultured , Rats, Sprague-Dawley , Tendon Injuries/drug therapy , Tendon Injuries/metabolism
2.
Nanotechnology ; 35(7)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37976543

ABSTRACT

The limited options of anabolic drugs restrict their application potential in osteoporosis treatment, despite their theoretical superiority in therapeutic efficacy over antiresorptive drugs. As a prevailing strategy, nano-delivery systems could offer a wider choice of anabolic drugs. In this study, calcium phosphate nanocomposites incorporated with simvastatin (Sim) with periostin-targeting ability were designed and prepared for osteoporosis treatment. Carboxymethyl dextran (CMD) as an anionic and hydrophilic dextran derivative was used to stabilize CaP. In addition, periosteum-targeted peptide (SDSSD) was further grafted on CMD to achieve the bone targeting function. In a one-step coordination assembly strategy, hydrophobic anabolic agent Sim and SDSSD-CMD graft (SDSSD-CMD) were incorporated into the CaP nanoparticles forming SDSSD@CaP/Sim nanocomposites. The resulting SDSSD@CaP/Sim possesses uniform size, great short-term stability and excellent biocompatibility. Moreover, SDSSD@CaP/Sim exhibited a reduced release rate of Sim and showed slow-release behaviour. As anticipated, the nanocomposites exhibited bone bonding capacity in both cellular and animal studies. Besides, SDSSD@CaP/Sim achieved obviously enhanced osteoporosis treatment effect compared to direct injection of Simin vivo. Therefore, our findings highlight the potential of SDSSD-incorporated and CaP-based nanocomposites as a viable strategy to enhance the therapeutic efficacy of anabolic drugs for osteoporosis treatment.


Subject(s)
Nanocomposites , Osteoporosis , Animals , Simvastatin/pharmacology , Simvastatin/therapeutic use , Osteoporosis/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , Calcium Phosphates/chemistry , Nanocomposites/therapeutic use
3.
J Nanobiotechnology ; 21(1): 397, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37904215

ABSTRACT

BACKGROUND: Abnormally regulated long non-coding RNAs (lncRNAs) functions in cancer emphasize their potential to serve as potential targets for cancer therapeutic intervention. LncRNA ASBEL has been identified as oncogene and an anti-sense transcript of tumor-suppressor gene of BTG3 in triple-negative breast cancer (TNBC). RESULTS: Herein, multicomponent self-assembled polyelectrolyte nanocomplexes (CANPs) based on the polyelectrolytes of bioactive hyaluronic acid (HA) and chitosan hydrochloride (CS) were designed and prepared for the collaborative modulation of oncogenic lncRNA ASBEL with antago3, an oligonucleotide antagonist targeting lncRNA ASBEL and hydrophobic curcumin (Cur) co-delivery for synergetic TNBC therapy. Antago3 and Cur co-incorporated CANPs were achieved via a one-step assembling strategy with the cooperation of noncovalent electrostatic interactions, hydrogen-bonding, and hydrophobic interactions. Moreover, the multicomponent assembled CANPs were ulteriorly decorated with a near-infrared fluorescence (NIRF) Cy-5.5 dye (FCANPs) for synchronous NIRF imaging and therapy monitoring performance. Resultantly, MDA-MB-231 cells proliferation, migration, and invasion were efficiently inhibited, and the highest apoptosis ratio was induced by FCANPs with coordination patterns. At the molecular level, effective regulation of lncRNA ASBEL/BTG3 and synchronous regulation of Bcl-2 and c-Met pathways could be observed. CONCLUSION: As expected, systemic administration of FCANPs resulted in targeted and preferential accumulation of near-infrared fluorescence signal and Cur in the tumor tissue. More attractively, systemic FCANPs-mediated collaborative modulating lncRNA ASBEL/BTG3 and Cur co-delivery significantly suppressed the MDA-MB-231 xenograft tumor growth, inhibited metastasis and extended survival rate with negligible systemic toxicity. Our present study represented an effective approach to developing a promising theranostic platform for combating TNBC in a combined therapy pattern.


Subject(s)
Curcumin , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , RNA, Long Noncoding/genetics , Curcumin/chemistry , Triple Negative Breast Neoplasms/pathology , Precision Medicine , Cell Line, Tumor
4.
Food Sci Nutr ; 11(10): 5675-5688, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823145

ABSTRACT

Cardiovascular diseases (CVDs) are a global health problem and leading cause of death worldwide. Thrombus formation, one of the CVDs, is essentially the formation of fibrin clots. The existing thrombolytic agents have the disadvantages of high price, short half-life, and high bleeding risk; hence, there is an urgent need to find the alternative thrombolytic agents. In recent years, traditional fermented foods have been widely investigated for their outstanding effects in the prevention and treatment of thrombus formation. In this review, we have focused on fibrinolytic enzymes produced by microorganisms during the fermentation of traditional fermented foods and their potential use for treating CVDs. First, we discussed about the sources of fibrinolytic enzymes and microbial strains that produce those enzymes followed by the optimization of fermentation process, purification, and physicochemical properties of fibrinolytic enzymes. Finally, we have summarized the thrombolytic effects of fibrinolytic enzymes in humans and mice. Fibrinolytic enzymes produced by microorganisms during the fermentation of traditional fermented foods not only lyse thrombi but also acts as anti-atherosclerotic, anti-hyperlipidemia, and neuroprotection agents. Therefore, fibrinolytic enzymes from traditional fermented foods have great potential for the prevention and treatment of CVDs.

5.
J Nanobiotechnology ; 21(1): 159, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37208748

ABSTRACT

BACKGROUND: Combinatorial immunotherapy strategies for enhancing the responsiveness of immune system have shown great promise for cancer therapy. Engineered nanoformulation incorporated toll-like receptor (TLR) 9 agonist CpG ODN has shown more positive results in suppressing tumor growth and can significantly enhance other immunotherapy activity with combinatorial effects due to the innate and adaptive immunostimulatory effects of CpG. RESULTS: In the present work, protamine sulfate (PS) and carboxymethyl ß-glucan (CMG) were used as nanomaterials to form nanoparticles through a self-assembly approach for CpG ODN encapsulation to generate CpG ODN-loaded nano-adjuvant (CNPs), which was subsequently mixed with the mixture of mouse melanoma-derived antigens of tumor cell lysates (TCL) and neoantigens to develop vaccine for anti-tumor immunotherapy. The obtained results showed that CNPs was able to effectively deliver CpG ODN into murine bone marrow-derived dendritic cells (DC) in vitro, and remarkably stimulate the maturation of DC cells with proinflammatory cytokine secretion. In addition, in vivo analysis showed that CNPs enhanced anti-tumor activity of PD1 antibody and CNPs-adjuvanted vaccine based on the mixture antigens of melanoma TCL and melanoma-specific neoantigen could not only induce anti-melanoma cellular immune responses, but also elicit melanoma specific humoral immune responses, which significantly inhibited xenograft tumor growth. Furthermore, CD16 CAR-T cells were generated by expressing CD16-CAR in CD3+CD8+ murine T cells. CONCLUSION: Our results eventually showed that anti-melanoma antibodies induced by CNPs-adjuvanted TCL vaccines were able to collaborate with CD16-CAR-T cells to generate an enhanced targeted anti-tumor effects through ADCC (antibody dependent cell cytotoxicity) approach. CD16 CAR-T cells has thus a great potential to be an universal promising strategy targeting on solid tumor synergistic immunotherapy via co-operation with TCL-based vaccine.


Subject(s)
Nanoparticles , Neoplasms , Vaccines , Humans , Mice , Animals , Adjuvants, Immunologic/pharmacology , Antigens, Neoplasm , Oligodeoxyribonucleotides/pharmacology , Antibody-Dependent Cell Cytotoxicity , Mice, Inbred C57BL
6.
Int J Pharm ; 637: 122850, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36990169

ABSTRACT

Neovascularization can provide tumors with essential nutrients and oxygen, as well as maintain a microenvironment for tumor cell growth. In this study, we combined anti-angiogenic therapy and gene therapy for synergistic anti-tumor therapy. We co-delivered the vascular endothelial growth factor receptor inhibitor fruquintinib (Fru) and small interfering RNA CCAT1 (siCCAT1) inhibiting epithelial-mesenchymal transition using 1,2-distearoyl-snglycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol)] with a pH-responsive benzoic imine linker bond (DSPE-Hyd-mPEG) and polyethyleneimine-poly (d, l-lactide) (PEI-PDLLA) nanocomplex (Fru and siCCAT1 co-delivery NP, FCNP). Due to the characteristics of pH-response, DSPE-Hyd-mPEG removed from FCNP after enrichment at the tumor site, which had a protective effect in the body. Meanwhile, Fru acting on the peritumor blood vessels was rapidly released, and then the nanoparticles loaded with siCCAT1 (CNP) was engulfed by cancer cells and facilitate the successful lysosomal escape of siCCAT1 in, playing the role of silencing CCAT1. Efficient silencing of CCAT1 by FCNP was observed, and simultaneously, the expression of VEGFR-1 was also down-regulated. Furthermore, FCNP elicited significant synergistic antitumor efficacy via anti-angiogenesis and gene therapy in the SW480 subcutaneous xenograft model with favorable biosafety and biocompatibility during the treatment. Overall, FCNP was considered a promising strategy for the combined anti-angiogenesis-gene treatment against colorectal cancer.


Subject(s)
Colorectal Neoplasms , Nanoparticles , Humans , Vascular Endothelial Growth Factor A/genetics , Polyethylene Glycols/chemistry , Angiogenesis Inhibitors/pharmacology , Nanoparticles/chemistry , Genetic Therapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment
7.
Adv Mater ; 35(29): e2208820, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36810905

ABSTRACT

Exploration of clinically acceptable blood glucose monitors has been engaging in the past decades, yet the ability to quantitatively detect blood glucose in a painless, accurate, and highly sensitive manner remains limited. Herein, a fluorescence-amplified origami microneedle (FAOM) device is described that integrates tubular DNA-origami nanostructures and glucose oxidase molecules into its inner network to quantitatively monitor blood glucose. The skin-attached FAOM device can collect glucose molecules in situ and transfer the input into a proton signal after the oxidase's catalysis. The proton-driven mechanical reconfiguration of DNA-origami tubes separates fluorescent molecules and their quenchers, eventually amplifying the glucose-correlated fluorescence signal. The function equation established on clinical examinees suggests that FAOM can report blood glucose in a highly sensitive and quantitative manner. In clinical blind tests, the FAOM achieves well-matched accuracy (98.70 ± 4.77%) compared with a commercial blood biochemical analyzer, fully meeting the requirements of accurate blood glucose monitoring. The FAOM device can be inserted into skin tissue in a trivially painful manner and with minimal leakage of DNA origami, substantially improving the tolerance and compliance of the blood glucose test.


Subject(s)
Blood Glucose , Nanostructures , Nucleic Acid Conformation , Blood Glucose Self-Monitoring , Protons , DNA/chemistry , Nanostructures/chemistry , Glucose
8.
Bioengineered ; 13(4): 11192-11201, 2022 04.
Article in English | MEDLINE | ID: mdl-35485325

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease that greatly affect patients' quality of life. Galangin extract is renowned for its anti-proliferative and anti-oxidative characteristics. However, galangin cytotoxicity studies are presently inadequate. We aimed to investigate the therapeutic potential of galangin on RA by investigating the PI3K/AKT signaling pathway.Fibroblast-like synovial cells (FLSs) were exposed to lipopolysaccharide (LPS) to establish an RA model in vitro. An ELISA assay was used to detect the levels of IL-1ß, TNF-α, and IL-6. Cell viability and apoptosis were determined by CCK8/EdU and flow cytometry assays. A western blot assay was used to analyze the protein expression levels. An RA rat model was established to evaluate the function of galangin through histopathological examination. Our results found that galangin induced apoptosis, inhibited cell proliferation, and increased cell invasion of rheumatoid arthritis fibroblast-like synovial cells (RAFLSs). Galangin inactivated the PI3K/AKT signaling pathway and the inflammatory response. An agonist of PI3K signaling, 740Y-P, restored the cellular functions of RAFLSs. Moreover, galangin suppressed the development of RA in vivo. Galangin effected its anti-arthritic influence through the PI3K/AKT signaling pathway. Galangin has potential as an alternative treatment for RA.


Subject(s)
Arthritis, Rheumatoid , Phosphatidylinositol 3-Kinase , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Flavonoids , Humans , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quality of Life , Rats , Signal Transduction
9.
Int J Mol Sci ; 23(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35054843

ABSTRACT

Despite advances in the development of tumor treatments, mortality from cancer continues to increase. Nanotechnology is expected to provide an innovative anti-cancer therapy, to combat challenges such as multidrug resistance and tumor recurrence. Nevertheless, tumors can greatly rely on autophagy as an alternative source for metabolites, and which desensitizes cancer cells to therapeutic stress, hindering the success of any current treatment paradigm. Autophagy is a conserved process by which cells turn over their own constituents to maintain cellular homeostasis. The multistep autophagic pathway provides potentially druggable targets to inhibit pro-survival autophagy under various therapeutic stimuli. In this review, we focus on autophagy inhibition based on functional nanoplatforms, which may be a potential strategy to increase therapeutic sensitivity in combinational cancer therapies, including chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy.


Subject(s)
Autophagy , Neoplasms/therapy , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Autophagy/radiation effects , Combined Modality Therapy , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/radiation effects , Humans , Nanoparticles
10.
Int J Pharm ; 608: 121091, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34555477

ABSTRACT

Cancer vaccines targeting tumor specific neoantigens derived from nonsynonymous mutations of tumor cells have emerged as an effective approach to induce antitumor T cells responses for personalized cancer immunotherapy. Despite the enormous potential of synthetic peptides as a common modality for neoantigen vaccines, their practical efficacy was limited due to their relatively low immunogenicity. Herein, we modify neoantigen peptide (Adpgk) derived from MC-38 colon carcinoma by supplementing ten consecutive positively-charged lysines (10 K-Adpgk) to obtain cationic polypeptide. And then we made them self-assemble with toll-like receptor 9 (TLR-9) agonist CpG oligodeoxynucleotides (CpG ODN) adjuvant directly forming antigen/adjuvant integrated nanocomplexes (PCNPs) through electrostatic interaction for potent tumor immunotherapy. The optimal formed PCNPs were around 175 nm with uniform size distribution and could maintain stability in physiological saline solution. CpG ODN and 10 K-Adpgk in the formed PCNPs could be effectively uptake by dendritic cells (DCs) and stimulate the maturation of DCs as well as improving the efficiency of antigen cross-presentation efficiency in vitro. Furthermore, the PCNPs vaccine could markedly improve neoantigen and adjuvant co-delivery efficiency to lymphoid organs and activate cytotoxic T cells. In addition, vaccination with PCNPs could not only offer prophylactic to protect mice from challenged MC-38 colorectal tumors, but also achieve a better anti-tumor effect in an established colorectal tumor model, and significantly prolong the survival rate of tumor-bearing mice. Therefore, this work provided a versatile but effective method for neoantigen peptide and CpG ODN co-assembly vaccine platform for efficient colorectal cancer immunotherapy.


Subject(s)
Cancer Vaccines , Colorectal Neoplasms , Immunotherapy , Toll-Like Receptor 9/agonists , Adjuvants, Immunologic , Animals , Colorectal Neoplasms/drug therapy , Mice , Mice, Inbred C57BL , Oligodeoxyribonucleotides , Peptides
11.
Nanoscale ; 13(31): 13375-13389, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34477743

ABSTRACT

Owing to its aggressive biological behavior, the lack of specific targets, and the strong therapeutic resistance of triple negative breast cancer (TNBC), current therapeutic strategies are still limited. The combination of multiple treatments has been confirmed as a promising strategy for TNBC therapy. However, the efficacy of combination therapy can be restricted due to increasing therapeutic resistance to various treatments. Herein, we constructed a nanodiamond (ND)-based nanoplatform for augmented mild-temperature photothermal/chemo combination therapy against TNBC, weakening the therapeutic resistance via autophagy inhibition enabled by the NDs. A layer-by-layer self-assembly approach was utilized to construct the ND-based nanoplatform. First, the NDs were modified with protamine sulphate (PS). Meanwhile, the photosensitizer indocyanine green (ICG) and the HSP70 small molecule inhibitor apoptozole (APZ) could be synchronously incorporated to form positively charged PS@ND (ICG + APZ). Then negatively charged hyaluronic acid (HA) was assembled onto the outer face of PS@ND (ICG + APZ) to form the NPIAs. Finally, the positively charged small molecule anti-cancer drug doxorubicin (DOX) could be adsorbed onto the surface of the NPIAs through electrostatic interactions (NPIADs). The resulting NPIADs could be triggered by NIR laser irradiation to exhibit enhanced mild-temperature photothermal therapy (PTT) effects via suppressing the expression of HSP70, and PTT combined with chemotherapy could further enhance the anti-tumor efficacy. Subsequently, the sensitivity of MDA-MB-231 cells could be significantly improved through the weakening of the thermal/drug resistance via autophagy inhibition, leading to augmented combination therapy that is efficient both in vitro and in vivo. Furthermore, the NPIADs could be used as a theranostic nanoplatform for fluorescence (FL) and photoacoustic (PA) imaging. Taken together, this study demonstrated a multifunctional ND-based nanoplatform for FL/PA imaging-guided augmented mild-temperature photothermal/chemo combination therapy via an autophagy regulation strategy against TNBC.


Subject(s)
Hyperthermia, Induced , Nanodiamonds , Nanoparticles , Triple Negative Breast Neoplasms , Autophagy , Doxorubicin/pharmacology , Humans , Phototherapy , Temperature , Triple Negative Breast Neoplasms/drug therapy
12.
J Nanobiotechnology ; 19(1): 238, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34380471

ABSTRACT

BACKGROUND: Cancer synergistic therapy strategy in combination with therapeutic gene and small molecule drug offers the possibility to amplify anticancer efficiency. Colon cancer-associated transcript-1 (CCAT1) is a well identified oncogenic long noncoding RNA (lncRNA) exerting tumorigenic effects in a variety of cancers including colorectal cancer (CRC). RESULTS: In the present work, curcumin (Cur) and small interfering RNA targeting lncRNA CCAT1(siCCAT1) were co-incorporated into polymeric hybrid nanoparticles (CSNP), which was constructed by self-assembling method with two amphiphilic copolymers, polyethyleneimine-poly (D, L-lactide) (PEI-PDLLA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) (DSPE-mPEG). Owing to the multicolor fluorescence characteristics of PEI-PDLLA, the constructed CSNP could be served as a theranostic nanomedicine for synchronous therapy and imaging both in vitro and in vivo. Resultantly, proliferation and migration of HT-29 cells were efficiently inhibited, and the highest apoptosis ratio was induced by CSNP with coordination patterns. Effective knockdown of lncRNA CCAT1 and concurrent regulation of relevant downstream genes could be observed. Furthermore, CSNP triggered conspicuous anti-tumor efficacy in the HT-29 subcutaneous xenografts model with good biosafety and biocompatibility during the treatment. CONCLUSION: On the whole, our studies demonstrated that the collaborative lncRNA CCAT1 silencing and Cur delivery based on CSNP might emerge as a preferable and promising strategy for synergetic anti-CRC therapy.


Subject(s)
Curcumin/pharmacology , Nanoparticles/chemistry , RNA, Long Noncoding/genetics , RNA, Long Noncoding/pharmacology , Animals , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Drug Combinations , Drug Delivery Systems/methods , Female , Gene Expression Regulation, Neoplastic/drug effects , HT29 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Polymers , Precision Medicine , RNA Interference , RNA, Long Noncoding/chemistry , RNA, Small Interfering/genetics
13.
Nanotechnology ; 32(46)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34371485

ABSTRACT

Tumor angiogenesis has been identified as an important factor in the development and progression of tumors, and anti-angiogenesis therapy has been recognized as an effective tumor therapy pattern. The unique characteristics of nanodiamonds (NDs) have been explored for photothermal therapy (PTT) against cancer, while the efficiency of mild PTT mediated by bare NDs was limited. The combination of different therapies into a single nanoplatform has shown great potential for synergistic cancer treatment. In this investigation, we integrated hydrophobic antiangiogenesis agent combretastatin A4 (CA4) into the protamine sulfate (PS) functionalized NDs hybrids (NDs@PS) with a noncovalent self-assembling method (CA4-NDs@PS) for potential combined anti-angiogenesis and mild PTT in liver cancer. The resulted CA4-NDs@PS NDs exhibited high drug loading ability, good dispersibility and colloidal stability. The near-infrared (NIR) laser irradiation could trigger the release of CA4 from CA4-NDs@PS NDs and elevate the temperature of CA4-NDs@PS NDs aqueous solution.In vitroresults illustrated that CA4-NDs@PS coupled with laser irradiation could remarkably enhance HepG-2 cells killing efficiency, leading to an enhanced photocytotoxicity. Furthermore,in vivoexperiments revealed that CA4-NDs@PS exhibited a highly synergistic anticancer efficacy with NIR laser irradiation in HepG-2 tumor-bearing mice. Altogether, our present study fabricated a novel NDs@PS-based nanoplatform for combined anti-tumor angiogenesis and mild PTT against liver cancer.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Nanodiamonds/therapeutic use , Protamines/pharmacology , Stilbenes/pharmacology , Animals , Cell Line, Tumor , Female , Hep G2 Cells , Humans , Mice , Mice, Inbred BALB C , Phototherapy/methods , Photothermal Therapy/methods
14.
ACS Appl Mater Interfaces ; 13(33): 39112-39125, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34384220

ABSTRACT

Autophagy inhibition could hinder the underlying protective mechanisms in the course of tumor treatment. The advances in autophagy inhibition have driven focus on the functionalized nanoplatforms by combining the current treatment paradigms with complementary autophagy inhibition for enhanced efficacy. Furthermore, Ca2+ overload is also a promising adjuvant target for the tumor treatment by augmenting mitochondrial damage. In this view, complementary mitochondrial Ca2+ overload and autophagy inhibition were first demonstrated as a novel strategy suitable for homing in on the shortage of photodynamic therapy (PDT). We constructed biodegradable tumor-targeted inorganic/organic hybrid nanocomposites (DPGC/OI) synchronously encapsulating IR780 and Obatoclax by biomineralization of the nanofilm method, which consists of pH-triggered calcium phosphate (CP), long circulation phospholipid block copolymers 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-poly(ethylene glycol) (PEG)2000-glucose (DPG). In the presence of the hydrophilic PEG chain and glucose transporter 1 (Glut-1) ligands, DPGC would become an effectively tumor-oriented nanoplatform. Subsequently, IR780 as an outstanding photosensitizer could produce increased amounts of toxic reactive oxygen species (ROS) after laser irradiation. Calcium phosphate (CP) as the Ca2+ nanogenerator could generate Ca2+ at low pH to induce mitochondrial Ca2+ overload. The dysfunction of mitochondria could enhance increased amounts of ROS. Based on the premise that autophagy would degrade dysfunctional organelles to sustain metabolism and homeostasis, which might participate in resistance to PDT, Obatoclax as an autophagy inhibitor would hinder the protective mechanism from cancer cells with negligible toxicity. Such an enhanced PDT via mitochondrial Ca2+ overload and autophagy inhibition could be realized by DPGC/OI.


Subject(s)
Autophagy/drug effects , Calcium Phosphates/chemistry , Glucose/chemistry , Indoles/chemistry , Nanocomposites/chemistry , Phosphatidylethanolamines/chemistry , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry , Animals , Biological Transport , Biomedical Enhancement , Female , Humans , Indoles/metabolism , Indoles/pharmacology , Mice, Inbred BALB C , Mitochondria/metabolism , Mitochondria/ultrastructure , Neoplasms/diagnostic imaging , Neoplasms/therapy , Phospholipids/chemistry , Photochemotherapy , Photosensitizing Agents/pharmacology , Pyrroles/chemistry , Pyrroles/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Surface Properties , Tissue Distribution
15.
Biomater Sci ; 9(10): 3838-3850, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33885068

ABSTRACT

Uniting combinational strategies has been confirmed to be a robust choice for high-performance cancer treatment due to their abilities to overcome tumor heterogeneity and complexity. However, the development of a simple, effective, and multifunctional theranostics nanoplatform still remains a challenge. In this study, we integrated multicomponent hyaluronic acid (HA), protamine (PS), nanodiamonds (NDs), curcumin (Cur), and IR780 into a single nanoplatform (denoted as HPNDIC) based on the combination of hydrophobic and electrostatic noncovalent interactions for dual-modal fluorescence/photoacoustic imaging guided ternary collaborative Cur/photothermal/photodynamic combination therapy of triple-negative breast cancer (TNBC). A two-step coordination assembly strategy was utilized to realize this purpose. In the first step, PS was utilized to modify the NDs clusters to form positively charged PS@NDs (PND) and the simultaneous encapsulation of the natural small-molecule drug Cur and the photosensitive small-molecule IR780 (PNDIC). Second, HA was adsorbed onto the outer surface of the PNDIC through charge complexation for endowing a tumor-targeting ability (HPNDIC). The resulting HPNDIC had a uniform size, high drug-loading ability, and excellent colloidal stability. It was found that under the near-infrared irradiation condition, IR780 could be triggered to exhibit both PTT/PDT dual-pattern therapy effects, leading to an enhanced therapy efficiency of Cur both in vitro and in vivo with good biocompatibility. Due to the intrinsic imaging property of IR780, the biodistribution and accumulation behavior of HPNDIC in vivo could be monitored by dual-modal fluorescence/photoacoustic imaging. Taken together, our current work demonstrated the assembly of a NDs-based multicomponent theranostic platform for dual-modal fluorescence/photoacoustic imaging guided triple-collaborative Cur/photothermal/photodynamic against TNBC.


Subject(s)
Nanodiamonds , Nanoparticles , Photochemotherapy , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , Phototherapy , Theranostic Nanomedicine , Tissue Distribution , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy
16.
J Cancer ; 12(8): 2385-2394, 2021.
Article in English | MEDLINE | ID: mdl-33758614

ABSTRACT

Background: The prognosis of early cardia cancer and non-cardia cancer is still controversial. It is difficult to collect a large number of cases with complete information in clinical practice. Our study was aimed to identify the differences in clinicopathological characteristics and outcomes of early cardia gastric cancer and non-cardia gastric cancer. Methods: All cases analyzed were from Surveillance, Epidemiology, and End Results database. The data of the patients with early gastric cancer from 2004 to 2010 was retrospectively analyzed. Patients were distributed to cardia cancer group and non-cardia cancer group. Univariate and multivariate analyses were performed to examine differences between groups. The competitive risk model was made to compare the association with cardia cancer and non-cardia cancer about the causes of death. Propensity score matching (PSM) was performed to reduce the bias. Results: We found that cardia cancer was more common in male patients and the White than that in non-cardia cancer at early stage, signet ring cell carcinoma was more common in non-cardia cancer, and the differentiation of non-cardia cancer was worse. Univariate analysis showed that age, marital status, race, tumor location, histology, grade, stage, and operation or not can determine the prognosis. And the prognosis of patients with cardia cancer was worse than that of non-cardia cancer, according to lymph node metastasis and the depth of tumor invasion. Multivariate analysis showed cardia cancer was an independent prognostic factor for poor prognosis. After PSM, cardia cancer still exhibited poor prognosis. Conclusions: At early stage, cardia cancer had a poor prognosis compared with non-cardia cancer. The prevention and treatment of early cardia cancer need to be seriously treated.

17.
Biomater Sci ; 8(24): 7132-7144, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33150879

ABSTRACT

The synergistic combination of microRNA (miRNA) modulation and chemotherapy has emerged as an effective strategy to combat cancer. Irinotecan (IRI) is a potent antitumor chemotherapeutic in clinical practice and has been used for treating various malignant tumors, including colorectal cancer (CRC). However, IRI is not effective for advanced CRC or metastatic behavior. Herein, novel polymeric hybrid micelles were engineered based on two different amphiphilic copolymers, polyethyleneimine-poly(d,l-lactide) (PEI-PLA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethyleneglycol) (DSPE-PEG), in which IRI and a tumor suppressive microRNA-34a (miR-34a) gene were efficiently co-loaded (MINPs) to achieve a chemo-miRNA combination therapy against CRC. MINPs were successfully constructed by two-step film dispersion and electrostatic interaction methods. IRI and miR-34a could be efficaciously encapsulated as MINPs and transferred to CRC cells. After encapsulation, MINPs would then upregulate miR-34a expression and regulate miR-34a-related downstream genes, which in turn led to enhanced cell cytotoxicity and apoptosis ratios. MINPs presented an excitation-dependent multi-wavelength emission feature due to the intrinstic fluorescence properties of PEI-PLA and could be utilized for in vitro/vivo imaging. According to the in vivo experimental results, MINPs possess the great characteristic of accumulating in situ in a tumor site and lightening it after intravenous administration. Furthermore, MINPs presented extraordinary antitumor efficacy owing to the combined therapy effects of IRI and miR-34a with good biocompability. Overall, our findings validated MINPs-mediated miR-34a replenishment and IRI co-delivery to serve as an effective theranostic platform and provided an innovative horizon for combining chemo-gene therapy against CRC.


Subject(s)
Colorectal Neoplasms , Drug Delivery Systems , Irinotecan/administration & dosage , MicroRNAs , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Micelles , MicroRNAs/genetics , Precision Medicine
18.
Biomater Sci ; 8(18): 5172-5182, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32840508

ABSTRACT

The induction of autophagy in cancer cells would occur in response to several therapy strategies, including chemotherapy and photothermal therapy (PTT). Hence, combined autophagy inhibition has been regarded as a prevailing strategy to enhance treatment sensitivity in cancers. Herein, dual pH/thermal responsive biomineralized nanocomposites (PCNPs) were rationally designed and prepared based on the hierarchical assembly of calcium phosphate (CaP) and polydopamine (PDA). The first step in the self-assembly process involves the incorporation of hydrophobic chemotherapeutic docetaxel (DTX) into the CaP nanoparticles. Next, PDA was utilized as the coating to hierarchically self-assemble onto the surface of CaP through a simple self-polymerization of dopamine. Third, the autophagy inhibitor chloroquine (CQ) was absorbed onto the surface of PDA via non-covalent interactions, forming PCNPs/DC. CQ was the only FDA approved autophagy inhibitor in clinical trials that could inhibit autophagosome fusion and degradation. The resulting PCNPs/DC could exhibit dual pH/thermal responsive properties due to the acid-sensitive CaP core and the photothermal effect of the PDA coating. Effective inhibition of autophagy in cancer cells could be realized by blocking the lysosome and weakening the degradation of autolysosomes by PCNPs/DC. Interestingly, complementary autophagy inhibition could therefore sensitize the effects of chemo-photothermal therapy both in vitro and in vivo with negligible toxicity. Therefore, these hierarchically assembled biomineralized nanocomposites would be used as a prevailing strategy to sensitize chemo-photothermal therapy by complementary autophagy inhibition.


Subject(s)
Hyperthermia, Induced , Nanocomposites , Nanoparticles , Animals , Autophagy , Calcium Phosphates , Indoles , Mice , Mice, Inbred BALB C , Phototherapy , Photothermal Therapy , Polymers
19.
Theranostics ; 10(16): 7273-7286, 2020.
Article in English | MEDLINE | ID: mdl-32641992

ABSTRACT

Rattle-structured nanoparticles with movable cores, porous shells and hollow interiors have shown great effectiveness in drug delivery and cancer theranostics. Targeting autophagy and glucose have provided alternative strategies for cancer intervention therapy. Herein, rattle-structured polydopamine@mesoporous silica nanoparticles were prepared for in vivo photoacoustic (PA) imaging and augmented low-temperature photothermal therapy (PTT) via complementary autophagy inhibition and glucose metabolism. Methods: The multifunctional rattle-structured nanoparticles were designed with the nanocore of PDA and the nanoshell of hollow mesoporous silica (PDA@hm) via a four-step process. PDA@hm was then loaded with autophagy inhibitor chloroquine (CQ) and conjugated with glucose consumer glucose oxidase (GOx) (PDA@hm@CQ@GOx), forming a corona-like structure nanoparticle. Results: The CQ and GOx were loaded into the cavity and decorated onto the surface of PDA@hm, respectively. The GOx-mediated tumor starvation strategy would directly suppress the expression of HSP70 and HSP90, resulting in an enhanced low-temperature PTT induced by PDA nanocore. In addition, autophagy inhibition by the released CQ made up for the loss of low-temperature PTT and starvation efficiencies by PTT- and starvation-activated autophagy, realizing augmented therapy efficacy. Furthermore, the PDA nanocore in the PDA@hm@CQ@GOx could be also used for PA imaging. Conclusion: Such a "drugs" loaded rattle-structured nanoparticle could be used for augmented low-temperature PTT through complementarily regulating glucose metabolism and inhibiting autophagy and in vivo photoacoustic imaging.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Drug Carriers/chemistry , Neoplasms/drug therapy , Photoacoustic Techniques/methods , Theranostic Nanomedicine/methods , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Autophagy/drug effects , Cell Line, Tumor , Chloroquine/administration & dosage , Chloroquine/pharmacokinetics , Drug Liberation , Female , Glucose Oxidase/administration & dosage , Glucose Oxidase/pharmacokinetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Hypothermia, Induced/methods , Indoles/chemistry , Mice , Nanoparticles/chemistry , Neoplasms/diagnosis , Neoplasms/pathology , Photothermal Therapy/methods , Polymers/chemistry , Silicon Dioxide/chemistry , Xenograft Model Antitumor Assays
20.
Nat Biomed Eng ; 4(7): 732-742, 2020 07.
Article in English | MEDLINE | ID: mdl-32572197

ABSTRACT

Drugs that induce thrombosis in the tumour vasculature have not resulted in long-term tumour eradication owing to tumour regrowth from tissue in the surviving rim of the tumour, where tumour cells can derive nutrients from adjacent non-tumoral blood vessels and tissues. Here, we report the performance of a combination of tumour-infarction therapy and chemotherapy, delivered via chitosan-based nanoparticles decorated with a tumour-homing peptide targeting fibrin-fibronectin complexes overexpressed on tumour-vessel walls and in tumour stroma, and encapsulating the coagulation-inducing protease thrombin and the chemotherapeutic doxorubicin. Systemic administration of the nanoparticles into mice and rabbits bearing subcutaneous or orthotopic tumours resulted in higher tumour growth suppression and decreased tumour recurrence than nanoparticles delivering only thrombin or doxorubicin, with histological and haematological analyses indicating an absence of detectable toxicity. The co-administration of a cytotoxic payload and a protease to elicit vascular infarction in tumours with biodegradable tumour-targeted nanoparticles represents a promising strategy for improving the therapeutic index of coagulation-based tumour therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Drug Therapy/methods , Infarction/drug therapy , Nanoparticles/chemistry , Thrombin/administration & dosage , Animals , Antineoplastic Agents/chemistry , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms/drug therapy , Cell Line, Tumor , Disease Models, Animal , Doxorubicin/chemistry , Female , Liver Neoplasms , Melanoma/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Rabbits , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...