Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Sci ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889208

ABSTRACT

Prostate carcinoma represents a predominant malignancy affecting the male population, with androgen deprivation therapy (ADT) serving as a critical therapeutic modality for advanced disease states, but it often leads to the development of resistance. Enzalutamide (Enz), a second-generation antiandrogen drug, initially offers substantial therapeutic benefit, but its efficacy wanes as drug resistance ensues. In this study, we found that synaptotagmin 4 (SYT4) is an upregulated gene in enzalutamide-resistant (EnzR) cell lines. The downregulation of SYT4, in combination with enzalutamide therapy, substantially enhances the antiproliferative effect on resistant prostate cancer cells beyond the capacity of enzalutamide monotherapy. SYT4 promotes vesicle efflux by binding to the synaptosome-associated protein 25 (SNAP25), thereby contributing to cell resistance against enzalutamide. The elevated expression of SYT4 is mediated by bromodomain-containing protein 4 (BRD4), and BRD4 inhibition effectively suppressed the expression of SYT4. Treatment with a therapeutic dose of enzalutamide combined with ASO-1, an antisense oligonucleotide drug targeting SYT4, shows promising results in reversing the resistance of prostate cancer to enzalutamide.

2.
Front Oncol ; 13: 1259784, 2023.
Article in English | MEDLINE | ID: mdl-38173833

ABSTRACT

Urinary tumors primarily consist of kidney, urothelial, and prostate malignancies, which pose significant treatment challenges, particularly in advanced stages. Antibody-drug conjugates (ADCs) have emerged as a promising therapeutic approach, combining monoclonal antibody specificity with cytotoxic chemotherapeutic payloads. This review highlights recent advancements, opportunities, and challenges in ADC application for urinary tumors. We discuss the FDA-approved ADCs and other novel ADCs under investigation, emphasizing their potential to improve patient outcomes. Furthermore, we explore strategies to address challenges, such as toxicity management, predictive biomarker identification, and resistance mechanisms. Additionally, we examine the integration of ADCs with other treatment modalities, including immune checkpoint inhibitors, targeted therapies, and radiation therapy. By addressing these challenges and exploring innovative approaches, the development of ADCs may significantly enhance therapeutic options and outcomes for patients with advanced urinary tumor.

SELECTION OF CITATIONS
SEARCH DETAIL
...