Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J AOAC Int ; 106(1): 146-155, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-35972336

ABSTRACT

BACKGROUND: Callerya reticulata (Bentham) Schot, Callerya dielsiana (Harms) P.K. Loc ex Z. Wei & Pedley, Callerya nitida var. hirsutissima (Z. Wei) X.Y. Zhu, and Callerya nitida (Bentham) R. Geesink, which belongs to the Leguminosae family, are important medicinal plants in China. The genus Callerya includes 26 species, 18 species are distributed in China, and the vine stems of some species are used as traditional medicinal herbs because they have important pharmacological activity. Due to the high similarity of appearance, it is difficult to identify them in the market by appearance alone. Therefore, circulating of Callerya-related materia medica on the market is confusing, sometimes even leading to drug safety problems. It is urgent to develop molecular methods for their identification. OBJECTIVE: To sequence and analyze the complete chloroplast (cp) genomes of C. reticulata, C. dielsiana, C. nitida var. hirsutissima, and C. nitida and to analyze their cp genome differences as a basis for seeking easier DNA barcoding for their identification. METHOD: After using Illumina high-throughput sequencing and nanopore sequencing to obtain the genome data, some bioinformatics software was used to assembly and analyze the molecular structure of cp genomes. RESULTS: The complete cp genomes of the four species were circular molecules, which ranged from 130 435 to 132 546 bp, and GC contents ranged from 33.89% to 34.89%. Each of them includes a large single-copy region, a small single-copy region, and without large inverted repeat regions. CONCLUSIONS: These results suggested that highly variable regions of the four cp genomes would provide useful plastid markers, which could be used as a potential genomic resource to resolve phylogenetic questions and provide a reference for mining specific DNA barcodes of these species. HIGHLIGHTS: Our study provided highly effective molecular markers for subsequent phylogenetic analysis, species identification, and biogeographic analysis of Callerya.


Subject(s)
Fabaceae , Genome, Chloroplast , Fabaceae/genetics , Phylogeny , China
2.
J Sep Sci ; 45(2): 638-649, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34729921

ABSTRACT

Callerya nitida var. hirsutissima. Z.Wei is a classical, traditional Chinese herbal medicine mostly used to treat rheumatoid arthritis. Recent reports suggest that inconsistent and poor-quality control levels have primarily affected the therapeutic efficacy. Therefore, the aim of the current study was to investigate the active chemical ingredients, stability of components in blood, pharmacokinetics, and pharmacodynamics to specify the potential markers for quality control and quality evaluation of Callerya nitida. The active components in vitro and in vivo were obtained by ultra-high-performance liquid chromatography-mass spectrometry. Moreover, the changes of the bioactive components in the blood were monitored over time (0-24 h) in order to identify stable active components. On this basis, the pharmacokinetic characteristics of these ingredients combined with the anti-inflammatory activity were determined to screen out the potential markers for ensuring the quality control of Callerya nitida. The identified four components, such as calycosin, daidzein, formononetin, and 5-hydroxymethylfurfural, have the characteristics of intrinsic components, clearly defined structures, high exposure values, and in vivo stability, which are important for the therapeutic activity of pharmacologically active materials. Therefore, they can be used as potential markers to control the quality levels of Callerya nitida.


Subject(s)
Drugs, Chinese Herbal , Fabaceae , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Medicine, Chinese Traditional
SELECTION OF CITATIONS
SEARCH DETAIL
...