Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 25(1): 303-314, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38039186

ABSTRACT

As a hydrophilic cyclic ketene acetal (CKA), 2-methylene-1,3,6-trioxocane (MTC) has recently attracted a lot of attention owing to its ability to promote a quicker (bio)degradation as compared to other heavily studied CKAs. Here, we prepared amphiphilic block copolymers based on poly-MTC with varying chain lengths by radical ring opening polymerization. Self-assemblies of these amphiphiles were performed in PBS buffer to generate nanoparticles with sizes from 40 to 105 nm, which were verified by dynamic light scattering, electron microscopy, and static light scattering (Zimm plots). Subsequently, fluorescence spectroscopy was applied to study the enzymatic degradation of Nile red-loaded nanoparticles. By performing a point-by-point comparison of fluorescence intensity decline patterns between nanoparticles, we demonstrated that lipase from Pseudomonas cepacia was very efficient in degrading the nanoparticles. Hydrolysis degradations under basic conditions were also carried out, and a complete degradation was achieved after 4 h. Additionally, cytotoxicity assays were carried out on HEK293 cells, and the results affirmed cell viabilities over 90% when incubated with up to 1 mg/mL nanoparticles for 24 h. These biodegradable and biocompatible nanoparticles hence hold great potential for future applications such as drug release.


Subject(s)
Micelles , Polymers , Humans , HEK293 Cells , Polymers/chemistry , Hydrolysis , Lipase , Polyethylene Glycols/chemistry
2.
J Youth Adolesc ; 52(12): 2636-2646, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37659969

ABSTRACT

Household income predicts early adolescents' cognitive development. However, the mechanism underlying this association and protective factors are unclear. This study assessed one-year longitudinal data to examine whether perceived discrimination mediated the association between household income and executive function and the moderating role of shift-and-persist. 344 early adolescents in rural China were included in the study (mean = 10.88 years, SD = 1.32 years, girls: 51.74%). The latent variable model revealed that household income predicted early adolescents' cognitive flexibility and working memory in the subsequent year through perceived discrimination. Shift-and-persist moderated the negative effects of perceived discrimination on cognitive flexibility: perceived discrimination impeded cognitive flexibility only among early adolescents with low shift-and-persist. The findings highlight perceived discrimination in the relation between household income and early adolescents' executive function and underscore the protective role of shift-and-persist.


Subject(s)
Executive Function , Perceived Discrimination , Female , Humans , Adolescent , Cognition , Memory, Short-Term , China
3.
J Mater Chem B ; 11(35): 8492-8505, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37594411

ABSTRACT

Tumor immunotherapy has been partly effective for specific cancers. However, problems such as low immune response, limited antitumor effectiveness, and high antibody costs still persist. Synergistic therapeutic approaches, such as immune checkpoint inhibition in conjunction with photothermal therapy and photoacoustic imaging, are expected to provide approaches for more precise and efficient immunotherapy of tumors. Furthermore, developing alternatives for antibodies, such as PD-L1 aptamers and nanocarriers, would reduce the cost of tumor immunotherapy. Herein, we develop a PD-L1-targeting nanotheranostic to block immune checkpoints for synergistic photothermal-immunotherapy against tumors, along with effective photoacoustic (PA) imaging. The nanotheranostic is synthesized by the modification of gold nanorods (GNRs) with the PD-L1 aptamer (APDL1), which can sensitively and specifically recognize PD-L1 on the tumor cell surface, and mediate nanoparticle accumulation and strong PA signals in tumors. The aptamer is released from GNR through a competition of glutathione (GSH) and is then functionalized as a PD-L1 blockade. In collaboration with the concurrent photothermal therapy, antitumor immunity is significantly augmented by enhancing the filtration of matured dendritic cells and suppressing regulatory T cells, followed by the activation of cytotoxic T cells and inhibition of T cell exhaustion. Such a nanotheranostic modality effectively suppresses tumor growth in mice, representing an appealing platform for both biological imaging and photoimmunotherapy of tumors.


Subject(s)
Neoplasms , Photoacoustic Techniques , Animals , Mice , B7-H1 Antigen , Theranostic Nanomedicine , Immunotherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Glutathione
4.
Biomaterials ; 297: 122096, 2023 06.
Article in English | MEDLINE | ID: mdl-37075614

ABSTRACT

Conventional chemotherapy for multiple myeloma (MM) faces the challenges of a low complete remission rate and transformation to recurrence/refractory. The current MM first-line clinical drug Bortezomib (BTZ) faces the problem of enhanced tolerance and nonnegligible side effects. B cell maturation antigen (BCMA), for its important engagement in tumor signaling pathways and novel therapy technologies such as Chimeric antigen receptor T-Cell immunotherapy (CAR-T) and Antibody Drug Conjugate (ADC), has been identified as an ideal target and attracted attention in anti-MM therapy. Emerging nanotechnology provided feasible methods for drug delivery and new therapeutic strategies such as photothermal therapy (PTT). Herein, we developed a BCMA-Targeting biomimetic photothermal nanomissile BTZ@BPQDs@EM @anti-BCMA (BBE@anti-BCMA) by integration of BTZ, black phosphorus quantum dots (BPQDs), Erythrocyte membrane (EM) and BCMA antibody (anti-BCMA). We hypothesized that this engineered nanomissile could attack tumor cells in triple ways and achieve effective treatment of MM. Consequently, the intrinsic biomimetic nature of EM and the active targeting property of anti-BCMA enhanced the accumulation of therapeutic agents in the tumor site. Besides, owing to the decrease in BCMA abundance, the potential apoptosis-inducing ability was revealed. With the support of BPQDs' photothermal effect, Cleaved-Caspase-3 and Bax signal increased significantly, and the expression of Bcl-2 was inhibited. Furthermore, the synergistic photothermal/chemo therapy can effectively inhibit tumor growth and reverse the disorder of NF-κB in vivo. Importantly, this biomimetic nanodrug delivery system and antibody induced synergistic therapeutic strategy efficiently killed MM cells with ignorable systemic toxicity, which is a promising method for the future anticancer treatment of hematological malignancies in clinics.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/therapeutic use , Immunotherapy, Adoptive/methods , Multiple Myeloma/therapy , Multiple Myeloma/pathology , NF-kappa B/metabolism , T-Lymphocytes , Biomimetics
5.
Environ Sci Pollut Res Int ; 30(25): 67608-67620, 2023 May.
Article in English | MEDLINE | ID: mdl-37118385

ABSTRACT

Non-point source pollution from rainwater runoff presents a serious challenge for urban water management in many cities undergoing urbanization and experiencing climate change. To alleviate water resource conflicts in Changsha, China, this study comprehensively evaluated the pollution characteristics and first flush effect (FFE) of runoff from asphalt roads and colored steel plate roofs under seven rainfall events in April-May 2022. The runoff was collected and purified using bioretention ponds. The results showed that the peak runoff pollutant concentrations occurred within the first 20 min of runoff generation and then decreased to relatively stable levels, with maximum total suspended solids (TSS) concentration and chemical oxygen demand (CODCr) reaching 873.5 and 207.32 mg/L, respectively, for road runoff and 162 and 73.31 mg/L for roof runoff, respectively. The main pollutants were TSS and CODCr, followed by ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total phosphorus (TP), and nitrite nitrogen (NO2--N). Concentrations of pollutants and FFE for roof runoff were lower than those for road runoff. Road runoff had a more obvious FFE for TP and NH4+-N, whereas the roof runoff showed the presence of TP and NO3--N. An important implication is that treating the first 30% of surface runoff from rainfall events with long antecedent dry days or high rainfall amounts is necessary to improve water quality before discharge or utilization. The study also found that road and roof runoff, after treatment with bioretention ponds, exhibit good water quality, thus, allowing their use as reclaimed water or for miscellaneous purposes in urban areas. Overall, this study provides useful information for designing management measures to mitigate runoff pollution and reuse in Changsha.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Movements , Rain , China , Water Quality , Cities , Phosphorus/analysis , Nitrogen/analysis
6.
Macromol Rapid Commun ; 44(16): e2200941, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36881376

ABSTRACT

Radical Ring-opening polymerization (RROP) of cyclic ketene acetals (CKAs) emerges to be a valuable polymerization technique. In attracting more attention, RROP has seen a new spike in publications, which the authors will put into perspective. This review will hence address the progress made on the number of available CKAs and the synthetic strategies to get them. In grouping, the available monomers into distinct categories, the enormous variety of available CKAs will be highlighted. Polymerizations of CKAs without vinylenes have the potential to yield fully biodegradable polymers, which is why this kind of polymerization is the focus of this review. Detailing the current understanding of the mechanism, the various side reactions will be noted and also their effect on the overall properties of the final polymers. Current attempts to control the ring-retaining and branching reactions will be discussed as well. In addition to the polymerization itself, the available materials will be discussed as well as homopolymers, copolymers of CKAs, and block-copolymers with pure CKA-blocks have significantly widened the range of possible applications of materials from RROP. Altogether this review highlights the progress in the entire field of RROP just of CKAs to give a holistic overview of the field.


Subject(s)
Acetals , Polymers , Polymerization , Ethylenes
7.
Environ Pollut ; 263(Pt B): 114449, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32268224

ABSTRACT

We quantified the transport and transformation of Cd in historically contaminated soil (OS) and artificially contaminated soil (NS), treated with 3% (w/w) rice straw biochar prepared at 400 °C (BC400) and 700 °C (BC700) under combined dry-wet and freeze-thaw cycles for 72 days simulating the natural aging process of 8 years. An improved three-layer mesh experiment was developed to simulate the natural situation in field. The result showed that the total Cd concentration increased in the biochar but decreased in the soil, suggesting that Cd was transported from the soil into the biochar during the aging process. The total Cd concentration in BC400 treated with both soils was higher than that in BC700 treated with both soils, however, BC700 displayed stronger ability on immobilizing Cd than BC400 because the Tessier exchangeable Cd fraction in BC700 treated both soils was lower than that in BC400 treated with both soils. The average Tessier exchangeable Cd fraction in the soil and biochar decreased in all treatments during the aging process, indicating that Cd tended to be more stable in the soil for a long term. The result also showed that biochar could immobilizate Cd by decreasing the Tessier exchangeable Cd fraction of soil and biochar, and the quantitative contributions of biochar and soil to Cd immobilization were different in OS and NS treated with BC400 and BC700. The biochar contribution to the reduction in Tessier exchangeable Cd fraction accounted for 40-85% in NS treated with BC400 and 54-82% in NS treated with BC700. However, in OS treated with biochar, the biochar contribution accounted for nearly 100%, and soil had almost no contribution. In summary, OS did not contribute to Cd immobilization, while NS contributed nearly 50% to Cd immobilization, and BC700 was more effective in immobilizing Cd than BC400.


Subject(s)
Oryza , Soil Pollutants/analysis , Cadmium/analysis , Charcoal , Soil
8.
Bioresour Technol ; 303: 122853, 2020 May.
Article in English | MEDLINE | ID: mdl-32044646

ABSTRACT

In this study, competitive adsorption behaviour and mechanisms of Cd2+, Ni2+ and NH4+ by fresh and artificially ageing biochars produced from rice straw at 400 and 700 °C (RB400, RB700, HRB400 and HRB700) were investigated. Cd2+ competed with Ni2+ and NH4+ for the overlapped adsorption sites on the biochars. For Cd2+ and Ni2+ adsorption, cation exchange (Qci) and mineral co-precipitation (Qcp) were the primary mechanisms for the low-temperature and high-temperature biochars, respectively. However, the other potential mechanisms (Qco) made the greatest contributions to NH4+ adsorption (>60%). Cd2+ and Ni2+ competition increased the proportions of mineral co-precipitation (Qcp) and other potential mechanisms (Qco) but decreased that of cation exchange (Qci) mechanism. Biochar ageing increased the contribution of surface complexation (Qcf) mechanism, especially for the low-temperature biochars. This study indicated that biochar aging and types and states of adsorbates should be considered when biochars were applied to remove contaminants.


Subject(s)
Ammonium Compounds , Oryza , Adsorption , Cadmium , Charcoal , Nickel
9.
Chemosphere ; 218: 308-318, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30476762

ABSTRACT

Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g-1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L-1 for RB400 and > 20 mg L-1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars.


Subject(s)
Cadmium/chemistry , Charcoal/chemistry , Nickel/chemistry , Adsorption , Cadmium/isolation & purification , Nickel/isolation & purification , Oryza/chemistry , Plant Stems/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
10.
Environ Sci Pollut Res Int ; 25(32): 32418-32432, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30232770

ABSTRACT

We quantified and investigated mechanisms for Cd2+ adsorption on biochars produced from plant residual and animal waste at various temperatures. Ten biochars were produced by pyrolysis of rice straw (RB) and swine manure (SB) at 300-700 °C and characterized. The Cd2+ adsorption isotherms, adsorption kinetics, and desorption characteristics were studied via a series of batch experiments, and Cd2+-loaded biochars were analyzed by SEM-EDS and XRD. The total Cd2+ adsorption capacity (Qc) increased with pyrolysis temperature for both biochars, however, rice straw-derived biochars had greater Qc than swine manure-derived biochars; hence, the biochar derived from rice straw at 700 °C (RB700) had the largest Qc, 64.4 mg g-1, of all studied biochars. Cadmium adsorption mechanisms in this study involved precipitation with minerals (Qcp), cation exchange (Qci), complexation with surface functional groups (Qco), and Cd-π interactions (Qcπ). Both the pyrolysis temperature and feedstock affected the quantitative contributions of the various adsorption mechanisms. The relative percent contributions to Qc for Cd2+ adsorption by RB and SB were 32.9-72.9% and 35.0-72.5% for Qcp, 21.7-50.9% and 20.4-43.3% for Qci, 2.2-14.8% and 1.4-18.8% for Qco, and 1.4-3.1% and 3.0-5.8% for Qcπ, respectively. For biochars produced at higher pyrolysis temperatures, the contributions of Qcp and Qcπ to adsorption increased, while the contributions of Qci and Qco decreased. Generally, Qcp dominated Cd2+ adsorption by high-temperature biochars (700 °C) (accounting for approximately 73% of Qc), and Qci was the most prominent mechanism for low-temperature biochars (400 °C) (accounting for 43.3-50.9% of Qc). Results suggested that biochar derived from rice straw is a promising adsorbent for the Cd2+ removal from wastewater and that the low-temperature biochars may outperform the high-temperature biochars for Cd2+ immobilization in acidic water or soils.


Subject(s)
Cadmium/chemistry , Charcoal , Manure , Oryza , Plant Structures , Temperature , Water Purification/methods , Adsorption , Animals , Hot Temperature , Minerals , Pyrolysis , Soil , Swine , Wastewater/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...