Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(5): e11425, 2024 May.
Article in English | MEDLINE | ID: mdl-38746546

ABSTRACT

Understanding the relationship between plant diversity and invasibility is essential in invasion ecology. Species-rich communities are hypothesized to be more resistant to invasions than species-poor communities. However, while soil microorganisms play a crucial role in regulating this diversity-invasibility relationship, the effects of plant competition mode and soil nutrient status on their role remain unclear. To address this, we conducted a two-stage greenhouse experiment. Soils were first conditioned by growing nine native species separately in them for 1 year, then mixed in various configurations with soils conditioned using one, three, or six species, respectively. Next, we inoculated the mixed soil into sterilized substrate soil and planted the alien species Rhus typhina and native species Ailanthus altissima as test plants. We set up two competition modes (intraspecific and interspecific) and two nutrient levels (fertilization using slow-release fertilizer and nonfertilization). Under intraspecific competition, regardless of fertilization, the biomass of the alien species was higher in soil conditioned by six native species. By contrast, under interspecific competition, the biomass increased without fertilization but remained stable with fertilization in soil conditioned by six native species. Analysis of soil microbes suggests that pathogens and symbiotic fungi in diverse plant communities influenced R. typhina growth, which varied with competition mode and nutrient status. Our findings suggest that the soil microbiome is pivotal in mediating the diversity-invasibility relationship, and this influence varies according to competition mode and nutrient status.

2.
BMC Surg ; 24(1): 142, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724895

ABSTRACT

PURPOSE: The aim of this study was to develop and validate a machine learning (ML) model for predicting the risk of new osteoporotic vertebral compression fracture (OVCF) in patients who underwent percutaneous vertebroplasty (PVP) and to create a user-friendly web-based calculator for clinical use. METHODS: A retrospective analysis of patients undergoing percutaneous vertebroplasty: A retrospective analysis of patients treated with PVP between June 2016 and June 2018 at Liuzhou People's Hospital was performed. The independent variables of the model were screened using Boruta and modelled using 9 algorithms. Model performance was assessed using the area under the receiver operating characteristic curve (ROC_AUC), and clinical utility was assessed by clinical decision curve analysis (DCA). The best models were analysed for interpretability using SHapley Additive exPlanations (SHAP) and the models were deployed visually using a web calculator. RESULTS: Training and test groups were split using time. The SVM model performed best in both the training group tenfold cross-validation (CV) and validation group AUC, with an AUC of 0.77. DCA showed that the model was beneficial to patients in both the training and test sets. A network calculator developed based on the SHAP-based SVM model can be used for clinical risk assessment ( https://nicolazhang.shinyapps.io/refracture_shap/ ). CONCLUSIONS: The SVM-based ML model was effective in predicting the risk of new-onset OVCF after PVP, and the network calculator provides a practical tool for clinical decision-making. This study contributes to personalised care in spinal surgery.


Subject(s)
Machine Learning , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Humans , Retrospective Studies , Osteoporotic Fractures/surgery , Osteoporotic Fractures/etiology , Osteoporotic Fractures/diagnosis , Female , Aged , Male , Spinal Fractures/surgery , Spinal Fractures/etiology , Spinal Fractures/diagnosis , Risk Assessment , Vertebroplasty/methods , Middle Aged , Internet , Fractures, Compression/surgery , Fractures, Compression/etiology , Aged, 80 and over
3.
Comput Intell Neurosci ; 2022: 2220527, 2022.
Article in English | MEDLINE | ID: mdl-35571720

ABSTRACT

Background: Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. Methods: We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. Results: Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. Conclusions: The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Humans , Lung Neoplasms/diagnosis , Machine Learning , Models, Statistical , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...