Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Arch Otorhinolaryngol ; 281(4): 1643-1649, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38091101

ABSTRACT

PURPOSE: The purpose of this review is to systematically summarize the application of organoids in the field of otolaryngology and head and neck surgery. It aims to shed light on the current advancements and future potential of organoid technology in these areas, particularly in addressing challenges like hearing loss, cancer research, and organ regeneration. METHODS: Review of current literature regrading organoids in the field of otolaryngology and head and neck surgery. RESULTS: The review highlights several advancements in the field. In otology, the development of organoid replacement therapies offers new avenues for treating hearing loss. In nasal science, the creation of specific organoid models aids in studying nasopharyngeal carcinoma and respiratory viruses. In head and neck surgery, innovative approaches for squamous cell carcinoma prediction and thyroid regeneration using organoids have been developed. CONCLUSION: Organoid research in otolaryngology-head and neck surgery is still at an early stage. This review underscores the potential of this technology in advancing our understanding and treatment of various conditions, predicting a transformative impact on future medical practices in these fields.


Subject(s)
Carcinoma, Squamous Cell , Hearing Loss , Otolaryngology , Humans , Organoids , Nose
2.
Cancer Gene Ther ; 31(1): 18-27, 2024 01.
Article in English | MEDLINE | ID: mdl-37968342

ABSTRACT

Single-cell sequencing (SCS) is a technology that separates thousands of cells from the organism and accurately analyzes the genetic material expressed in each cell using high-throughput sequencing technology. Unlike the traditional bulk sequencing approach, which can only provide the average value of a cell population and cannot obtain specific single-cell data, single-cell sequencing can identify the gene sequence and expression changes of a single cell, and reflects the differences between genetic material and protein between cells, and ultimately the role played by the tumor microenvironment. single-cell sequencing can further explore the pathogenesis of head and neck malignancies from the single-cell biological level and provides a theoretical basis for the clinical diagnosis and treatment of head and neck malignancies. This article will systematically introduce the latest progress and application of single-cell sequencing in malignant head and neck tumors.


Subject(s)
Head and Neck Neoplasms , Humans , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Tumor Microenvironment/genetics
3.
Cell Commun Signal ; 21(1): 49, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36872320

ABSTRACT

Head and neck tumors (HNCs) are a common tumor in otorhinolaryngology head and neck surgery, accounting for 5% of all malignant tumors in the body and are the sixth most common malignant tumor worldwide. In the body, immune cells can recognize, kill, and remove HNCs. T cell-mediated antitumor immune activity is the most important antitumor response in the body. T cells have different effects on tumor cells, among which cytotoxic T cells and helper T cells play a major killing and regulating role. T cells recognize tumor cells, activate themselves, differentiate into effector cells, and activate other mechanisms to induce antitumor effects. In this review, the immune effects and antitumor mechanisms mediated by T cells are systematically described from the perspective of immunology, and the application of new immunotherapy methods related to T cells are discussed, with the objective of providing a theoretical basis for exploring and forming new antitumor treatment strategies. Video Abstract.


Subject(s)
Head and Neck Neoplasms , Humans , Immunotherapy , T-Lymphocytes, Helper-Inducer
4.
Cell Commun Signal ; 21(1): 62, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964534

ABSTRACT

Cancer is a leading cause of morbidity and death worldwide. While various factors are established as causing malignant tumors, the mechanisms underlying cancer development remain poorly understood. Early diagnosis and the development of effective treatments for cancer are important research topics. Transfer RNA (tRNA), the most abundant class of RNA molecules in the human transcriptome, participates in both protein synthesis and cellular metabolic processes. tRNA-derived fragments (tRFs) are produced by specific cleavage of pre-tRNA and mature tRNA molecules, which are highly conserved and occur widely in various organisms. tRFs were initially thought to be random products with no physiological function, but have been redefined as novel functional small non-coding RNA molecules that help to regulate RNA stability, modulate translation, and influence target gene expression, as well as other biological processes. There is increasing evidence supporting roles for tRFs in tumorigenesis and cancer development, including the regulation of tumor cell proliferation, invasion, migration, and drug resistance. Understanding the regulatory mechanisms by which tRFs impact these processes has potential to inform malignant tumor diagnosis and treatment. Further, tRFs are expected to become new biological markers for early diagnosis and prognosis prediction in patients with tumors, as well as a targets for precision cancer therapies. Video abstract.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Transcriptome , RNA, Transfer/genetics , RNA, Transfer/metabolism
5.
Bioengineered ; 13(5): 12156-12168, 2022 05.
Article in English | MEDLINE | ID: mdl-35577352

ABSTRACT

Malignant tumors are a threat to human health, thus it is critical to better understand the mechanism of tumor occurrence and development and to find key therapeutic targets. Competitive endogenous RNA (ceRNA) is a type of RNA molecule that includes mRNA of coding-protein, pseudogenes, long non-coding RNA (lncRNA), and circular RNA (circRNA) etc. It is created through a competitive combination of common small RNA (miRNA) and has an inhibitory effect on mRNA translation. ceRNA regulate the post transcriptional expression of genes by competitively binding to common microRNAs (miRNAs).Studies have shown that cernas are involved in tumor cell proliferation, invasion and migration, drug resistance, angiogenesis, as well as tumor immunity, and so on, affecting the progression of tumor development. This article reviews the reported roles of exosomal ceRNA in the diagnosis and treatment of malignant tumors and the mechanisms underlying these.


Subject(s)
Exosomes , Neoplasms , RNA, Circular , RNA, Long Noncoding , Exosomes/genetics , Humans , MicroRNAs/genetics , Neoplasms/diagnosis , Neoplasms/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
6.
J Transl Med ; 20(1): 161, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35382838

ABSTRACT

Exosomes are microvesicles secreted by cells. They contain a variety of bioactive substances with important roles in intercellular communication. Circular RNA (circRNA), a type of nucleic acid molecule found in exosomes, forms a covalently bonded closed loop without 5' caps or 3' poly(A) tails. It is structurally stable, widely distributed, and tissue specific. CircRNAs mainly act as microRNA sponges and have important regulatory roles in gene expression; they are superior to other non-coding RNAs as molecular diagnostic markers and drug treatment targets. Exosomal-derived circRNAs in the body fluids of tumor patients can modulate tumor proliferation, invasion, metastasis, and drug resistance. They can be used as effective biomarkers for early non-invasive diagnosis and prognostic evaluation of tumors, and also represent ideal targets for early precision therapeutic intervention. This review provides a theoretical basis for exploring the applications of exosomal circRNAs in malignant tumor diagnosis and treatment. We describe the biological functions of exosomal circRNAs in the occurrence and development of malignant tumors, their potential utility in diagnosis and treatment, and possible mechanisms.


Subject(s)
Exosomes , MicroRNAs , Neoplasms , Cell Communication , Exosomes/genetics , Exosomes/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , RNA, Circular/genetics
7.
Ther Clin Risk Manag ; 18: 185-195, 2022.
Article in English | MEDLINE | ID: mdl-35281777

ABSTRACT

The olfactory nerve (ON) is the only cranial nerve exposed to the external environment. Hence, it is susceptible to damage from head trauma, viral infection, inflammatory stimulation, and chemical toxins, which can lead to olfactory dysfunction. However, compared with all other cranial nerves, the ON is unique due to its inherent ability to regenerate. This characteristic provides a theoretical basis for treatment of olfactory dysfunction. Olfactory training (OT) is one of the main treatments for olfactory dysfunction. It is easy to apply and has few side-effects, and has been shown to be efficacious for patients with olfactory dysfunction of various causes. To further understand the application value of ON regeneration and OT on olfactory dysfunction, we review the research progress on the mechanism of ON regeneration and OT.

8.
Cancer Manag Res ; 13: 5813-5820, 2021.
Article in English | MEDLINE | ID: mdl-34326665

ABSTRACT

The study of salivary exosomes in malignant neoplasms has attracted widespread attention in the clinical setting. Although a variety of diagnostic and treatment approaches have been proposed, there are some limitations to their application. In recent years, the role of salivary exosomes in cancer has been increasingly studied. Salivary exosomes not only renew and regulate the biological behavior of tumor cells, such as malignant proliferation, migration, and invasion, but they also serve as ideal markers for early diagnosis of diseases and may represent an effective therapeutic target. This article reviews the current research on salivary exosomes in malignant neoplasms.

9.
Onco Targets Ther ; 14: 4127-4136, 2021.
Article in English | MEDLINE | ID: mdl-34267526

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck. HNSCC mainly affects the oral cavity and the laryngeal, laryngopharyngeal, and oropharyngeal tracts. The high incidence, hidden onset, low survival rate, and unsatisfactory effects of treatment effect underscore the importance of identify the mechanisms of HNSCC occurrence and development. Although there is a very urgent need for early diagnosis and treatment, there are currently no reliable early HNSCC diagnosis biomarkers or effective treatment targets. Long non-coding RNA (lncRNA) is widely involved in biological processes, especially as a key regulator of tumorigenesis and development. Lung adenocarcinoma metastasis-associated transcript 1 (MALAT1) is an important member of the lncRNA family that can regulate the occurrence and development of a variety of malignant tumors and is anticipated to be an ideal marker for early tumor diagnosis and an effective therapeutic target. Here, we review the research progress into the role of MALAT1 in the diagnosis and treatment of HNSCC and its regulatory mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...