Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 14(1)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38248852

ABSTRACT

Smilax china L. (Chinaroot) is a natural herb that has multiple uses, such as being used to make tea and food. Both its roots and leaves have different uses due to their unique components. In this study, we analyzed the extract of S. china. roots using LC-HRMS and evaluated the neuroprotective effects and metabolic regulation of S. china on Caenorhabditis elegans. Chinaroot extract prolonged the life span of healthy nematodes, delayed the paralysis time of transgenic CL4176, and reduced the level of ß-amyloid deposition in transgenic CL2006. The comprehensive analysis of metabolomics and qRT-PCR revealed that Chinaroot extract exerted neuroprotective effects through the valine, leucine and isoleucine degradation and fatty acid degradation pathways. Moreover, we first discovered that the expressions of T09B4.8, ech-7, and agxt-1 were linked to the neuroprotective effects of Chinaroot. The material exerted neuroprotective effects by modulating metabolic abnormalities in AD model C. elegans. Our study provides a new foundation for the development of functional food properties and functions.

2.
Metabolites ; 12(11)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36355094

ABSTRACT

Glucose absorption promoters perform insulin mimic functions to enhance blood glucose transport to skeletal muscle cells and accelerate glucose consumption, thereby reducing blood glucose levels. In our screening exploration of food ingredients for improving glucose transportation and metabolism, we found that the saponins in American ginseng (Panaxquinquefolius L.) showed potential activity to promote glucose uptake, which can be used for stabilizing levels of postprandial blood glucose. The aim of this study was to identify key components of American ginseng with glucose uptake-promoting activity and to elucidate their metabolic regulatory mechanisms. Bio-guided isolation using zebrafish larvae and 2-NBDG indicator identified ginsenoside Rb1 (GRb1) as the most potential promotor of glucose uptake. Using UPLC-QTOF-MS/MS combined with RT-qPCR and phenotypic verification, we found that riboflavin metabolism is the hinge for GRb1-mediated facilitation of glucose transport. GRb1-induced restoration of redox homeostasis was mediated by targeting riboflavin transporters (SLC52A1 and SLC52A3) and riboflavin kinase (RFK).

3.
Metabolites ; 12(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144245

ABSTRACT

The transitional expression and aggregation of amyloid ß (Aß) are the most important causative factors leading to the deterioration of Alzheimer's disease (AD), a commonly occurring metabolic disease among older people. Antioxidant agents such as vitamin C (Vc) have shown potential effects against AD and aging. We applied an liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method and differential metabolites strategy to explore the metabolic disorders and Vc restoration in a human Aß transgenic (Punc-54::Aß1-42) nematode model CL2006. We combined the LC-MS/MS investigation with the KEGG and HMDB databases and the CFM-ID machine-learning model to identify and qualify the metabolites with important physiological roles. The differential metabolites responding to Aß activation and Vc treatment were filtered out and submitted to enrichment analysis. The enrichment showed that Aß mainly caused abnormal biosynthesis and metabolism pathways of phenylalanine, tyrosine and tryptophan biosynthesis, as well as arginine and proline metabolism. Vc reversed the abnormally changed metabolites tryptophan, anthranilate, indole and indole-3-acetaldehyde. Vc restoration affected the tryptophan metabolism and the biosynthesis of phenylalanine, tyrosine and tryptophan. Our findings provide supporting evidence for understanding the metabolic abnormalities in neurodegenerative diseases and the repairing effect of drug interventions.

4.
ACS Appl Mater Interfaces ; 14(30): 34714-34721, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35876495

ABSTRACT

Harvesting low-grade heat by an ionic hydrogel thermoelectric generator (ITEG) into useful electricity is promising to power flexible electronics. However, the poor environmental tolerance of the ionic hydrogel limits its application. Herein, we demonstrate an ITEG with high thermoelectric properties, as well as excellent capabilities of water retention, freezing resistance, and self-regeneration. The obtained ITEG can maintain the original water content at ambient conditions (302 K, 65% relative humidity (RH)) for 7 days and keep unfreezing at a low temperature (253 K). It can even be self-regenerated and recovered to its original state after a water loss in high-temperature conditions. Furthermore, a high ionic Seebeck coefficient of 11.3 mV K-1 and an impressive power density of 167.90 mW m-2 are achieved under a temperature difference of 20 K. A high power density of 60.00 mW m-2 can also be maintained even at 258 K. After drying and regeneration, ITEG-re could even exhibit a higher ionic Seebeck coefficient of 11.8 mV K-1. Successful lighting of light-emitting diodes (LEDs) and charging of capacitors demonstrate the great potential of ITEG to provide continuous energy supply for powering flexible electronics.

5.
Food Chem ; 387: 132933, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35429936

ABSTRACT

The fruit juice food industry produces huge waste annually, mainly Citrus peel and seeds. We investigated their chemical composition using hydrophilic interaction chromatography (HILIC-) and reverse phase liquid chromatography tandem mass spectrometry (RPLC-MS/MS), revealing 277 compounds, mainly containing flavonoids and limonoids. As the primary representative component in Citrus waste, limonin was selected to be explored new bio-functions. We applied Zebrafish larvae to study the metabolomic response invoked by limonin. The differential metabolites (DMs) varied depending on the exposing concentration of limonin. Enrichment analysis indicated that the identified DMs related to inflammation and neurologic disorders, including epilepsy which were newly discovered for limonoids and Citrus waste. Limonin was found to restore amino acids disorder to take neuroprotection against epilepsy. Our findings provided a new bio-function and purpose for Citrus waste and limonoids. Also, we demonstrated a concise case to repurpose food waste for new applications under metabolome investigation.


Subject(s)
Citrus , Limonins , Refuse Disposal , Amino Acids/analysis , Animals , Citrus/chemistry , Fruit/chemistry , Limonins/analysis , Tandem Mass Spectrometry , Zebrafish/metabolism
6.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328410

ABSTRACT

Laxogenin C (LGC) is a natural spirostanol deriving from plant hormone which has shown growing regulation similar to those of brassinosteroids. In the present study, LGC showed a promoting effect on tomato seed germination and seedling growth in a dose-dependent manner. We applied LC-MS/MS to investigate metabolome variations in the tomato treated with LGC, which revealed 10 differential metabolites (DMs) related to KEGG metabolites, associated with low and high doses of LGC. Enrichment and pathway mapping based on the KEGG database indicated that LGC regulated expressions of 2-hydroxycinnamic acid and l-phenylalanine to interfere with phenylalanine metabolism and phenylpropanoids biosynthesis. The two pathways are closely related to plant growth and lignin formation. In our further phenotypic verification, LGC was confirmed to affect seedling lignification and related phenylpropanoids, trans-ferulic acid and l-phenylalanine levels. These findings provided a metabolomic aspect on the plant hormone derivates and revealed the affected metabolites. Elucidating their regulation mechanisms can contribute to the development of sustainable agriculture. Further studies on agrichemical development would provide eco-friendly and efficient regulators for plant growth control and quality improvement.


Subject(s)
Lignin , Solanum lycopersicum , Chromatography, Liquid , Lignin/metabolism , Solanum lycopersicum/metabolism , Metabolome , Metabolomics , Phenylalanine/metabolism , Plant Growth Regulators/metabolism , Seedlings/metabolism , Spirostans , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...