Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076244

ABSTRACT

Positron emission tomography (PET) has a wide range of applications in the treatment and prevention of major diseases owing to its high sensitivity and excellent resolution. However, there is still much room for optimization in the readout circuit and fast pulse sampling to further improve the performance of the PET scanner. In this work, a LIGHTENING® PET detector using a 13 × 13 lutetium-yttrium oxyorthosilicate (LYSO) crystal array read out by a 6 × 6 silicon photomultiplier (SiPM) array was developed. A novel sampling method, referred to as the dual time interval (DTI) method, is therefore proposed to realize digital acquisition of fast scintillation pulse. A semi-cut light guide was designed, which greatly improves the resolution of the edge region of the crystal array. The obtained flood histogram shown that all the 13 × 13 crystal pixels can be clearly discriminated. The optimum operating conditions for the detector were obtained by comparing the flood histogram quality under different experimental conditions. An average energy resolution (FWHM) of 14.3% and coincidence timing resolution (FWHM) of 972 ps were measured. The experimental results demonstrated that the LIGHTENING® PET detector achieves extremely high resolution which is suitable for the development of a high performance time-of-flight PET scanner.

2.
Phys Med Biol ; 58(21): 7815-27, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24145134

ABSTRACT

This work focuses on event energy measurement, a crucial task of scintillation detection systems. We modeled the scintillation detector as a linear system and treated the energy measurement as a deconvolution problem. We proposed a pulse model based iterative deconvolution (PMID) method, which can process pileup events without detection and is adaptive for different signal pulse shapes. The proposed method was compared with digital gated integrator (DGI) and digital delay-line clipping (DDLC) using real world experimental data. For singles data, the energy resolution (ER) produced by PMID matched that of DGI. For pileups, the PMID method outperformed both DGI and DDLC in ER and counts recovery. The encouraging results suggest that the PMID method has great potentials in applications like photon-counting systems and pulse height spectrometers, in which multiple-event pileups are common.


Subject(s)
Models, Theoretical , Scintillation Counting/methods , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...