Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732932

ABSTRACT

In this paper, a 3D conformal meta-lens designed for manipulating electromagnetic beams via height-to-phase control is proposed. The structure consists of a 40 × 20 array of tunable unit cells fabricated using 3D printing, enabling full 360° phase compensation. A novel automatic synthesizing method (ASM) with an integrated optimization process based on genetic algorithm (GA) is adopted here to create the meta-lens. Simulation using CST Microwave Studio and MATLAB reveals the antenna's beam deflection capability by adjusting phase compensations for each unit cell. Various beam scanning techniques are demonstrated, including single-beam, dual-beam generation, and orbital angular momentum (OAM) beam deflection at different angles of 0°, 10°, 15°, 25°, 30°, and 45°. A 3D-printed prototype of the dual-beam feature has been fabricated and measured for validation purposes, with good agreement between both simulation and measurement results, with small discrepancies due to 3D printing's low resolution and fabrication errors. This meta-lens shows promise for low-cost, high-gain beam deflection in mm-wave wireless communication systems, especially for sensing applications, with potential for wider 2D beam scanning and independent beam deflection enhancements.

2.
Sci Rep ; 13(1): 21790, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065971

ABSTRACT

A multifunctional beam splitting frequency selective surface (FSS) is modeled, analyzed, and tested in transmission and reflection modes. The proposed FSS comprises a C-shaped split-ring resonator designed and fabricated on an ultrathin, flexible polyimide material. When a linearly polarized incident wave interacts with the unit cell of the proposed FSS, half of the wave is reflected, and the other half is transmitted at two frequency bands from 5.8-6.2 GHz and 18.5-22 GHz. Moreover, the proposed FSS is angularly stable upto 40° and also performs simultaneous beam splitting and quarter-wave operation within one of its two bands of operation i.e., from 16.5-18.2 GHz. Such flexible beam splitting FSSs with polarization transformation operation and having angular stability, size miniaturization and multi-band operation is a specialized component having potential to be used for electromagnetic wave manipulation in antenna systems, radar technology, stealth technology, wireless communication, satellite communication, medical imaging, security and surveillance, aerospace and defense, and automotive radar.

3.
Sensors (Basel) ; 23(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299911

ABSTRACT

In this article, a miniaturized antenna is proposed for 4G/5G multiple input, multiple output (MIMO) applications for smartphones. The proposed antenna is composed of an inverted L-shaped antenna with decoupled elements to cover 4G (2000-2600 MHz), and a planar inverted-F antenna (PIFA) with a J-slot to cover 5G (3400-3600 MHz and 4800-5000 MHz). Furthermore, to achieve the purposes of miniaturization and decoupling, the structure adopts a feeding stub, shorting stub, and outstanding floor, additionally adding the slot to the PIFA, to generate additional frequency bands. Due to the advantages such as multiband operation, MIMO configuration for 5G communications, high isolation, and a compact structure, the proposed antenna design is attractive for 4G/5G smartphones. The antenna array is printed on an FR4 dielectric board, measuring 140 × 70 × 0.8 mm3, with the 4G antenna located on a top 15 mm-long headroom.


Subject(s)
Communication , Smartphone , Miniaturization , Orientation, Spatial
4.
Micromachines (Basel) ; 14(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37374821

ABSTRACT

This paper presents a new design for a dual-band double-cylinder dielectric resonator antenna (CDRA) capable of efficient operation in microwave and mm-wave frequencies for 5G applications. The novelty of this design lies in the antenna's capability to suppress harmonics and higher-order modes, resulting in a significant improvement in antenna performance. Additionally, both resonators are made of dielectric materials with different relative permittivities. The design procedure involves the utilization of a larger cylinder-shaped dielectric resonator (D1), which is fed by a vertically mounted copper microstrip securely attached to its outer surface. An air gap is created at the bottom of (D1), and a smaller CDRA (D2) is inserted inside this gap, with its exit facilitated by a coupling aperture slot etched on the ground plane. Furthermore, a low-pass filter (LPF) is added to the feeding line of D1 to eliminate undesirable harmonics in the mm-wave band. The larger CDRA (D1) with a relative permittivity of 6 resonates at 2.4 GHz, achieving a realized gain of 6.7 dBi. On the other hand, the smaller CDRA (D2) with a relative permittivity of 12 resonates at a frequency of 28 GHz, reaching a realized gain of 15.2 dBi. The dimensions of each dielectric resonator can be independently manipulated to control the two frequency bands. The antenna exhibits excellent isolation between its ports, with scattering parameters (S12) and (S21) falling below -72/-46 dBi at the microwave and mm-wave frequencies, respectively, and not exceeding -35 dBi for the entire frequency band. The experimental results of the proposed antenna's prototype closely align with the simulated results, validating the design's effectiveness. Overall, this antenna design is well-suited for 5G applications, offering the advantages of dual-band operation, harmonic suppression, frequency band versatility, and high isolation between ports.

5.
Sensors (Basel) ; 23(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36904796

ABSTRACT

Antennas that generate orbital angular momentum (OAM) have the potential to significantly enhance the channel capacity of upcoming wireless systems. This is because different OAM modes that are excited from a shared aperture are orthogonal, which means that each mode can carry a distinct stream of data. As a result, it is possible to transmit multiple data streams at the same time and frequency using a single OAM antenna system. To achieve this, there is a need to develop antennas that can create several OAM modes. This study employs an ultrathin dual-polarized Huygens' metasurface to design a transmit array (TA) that can generate mixed-OAM modes. Two concentrically-embedded TAs are used to excite the desired modes by achieving the required phase difference according to the coordinate position of each unit cell. The prototype of the TA, which operates at 28 GHz and has a size of 11 × 11 cm 2, generates mixed OAM modes of -1 and -2 using dual-band Huygens' metasurfaces. To the best of the authors' knowledge, this is the first time that such a low-profile and dual-polarized OAM carrying mixed vortex beams has been designed using TAs. The maximum gain of the structure is 16 dBi.

6.
Sensors (Basel) ; 23(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904881

ABSTRACT

In this paper, an ultra-wideband and polarization-insensitive frequency-selective surface absorber is presented with oblique incident stable behavior. Different from conventional absorbers, the absorption behavior is much less deteriorated with the increase in the incidence angle. Two hybrid resonators, which are realized by symmetrical graphene patterns, are employed to obtain the desired broadband and polarization-insensitive absorption performance. The optimal impedance-matching behavior is designed at the oblique incidence of electromagnetic waves, and an equivalent circuit model is used to analyze and facilitate the mechanism of the proposed absorber. The results indicate that the absorber can maintain a stable absorption performance with a fractional bandwidth (FWB) of 136.4% up to 40°. With these performances, the proposed UWB absorber could be more competitive in aerospace applications.

7.
Micromachines (Basel) ; 13(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36296011

ABSTRACT

In this paper, a wideband and high-gain circular polarised Fabry-Perot Resonator Antenna (FPRA) with a single partially reflective surface (PRS) layer is automatically generated and optimised using a VBA-based interface system between CST Microwave studio and Matlab. The proposed PRS layer is a promising superstrate for wideband and high-gain FP resonator antennas due to its relatively high reflection coefficient magnitude and positive phase gradient, which resemble that of the optimum PRS over the relevant frequency band. The circular polarisation was achieved using a sequential feeding network for a 2 × 2 array air-gapped slot-coupled elliptical patch antenna. The proposed design achieved an impedance bandwidth of 48.58% (15.3 GHz) ranging from 23.84 GHz to 39.14 GHz, and the -3 dB gain bandwidth was 22.42% (6.25 GHz) from 24.75 to 31 GHz, with a peak gain of 17.12 dB at 29 GHz, and an axial ratio bandwidth of 21.75% (6.2 GHz). In addition, the achieved radiation efficiency was 90%. Consistent and almost invariant radiation patterns are achieved over the millimetre-wave frequency band of interest. The experimental and simulated results are in good agreement, justifying the feasibility of the proposed design as a high-gain and wideband FP resonator array antenna for Mm-wave applications.

8.
Sci Rep ; 12(1): 14214, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35987822

ABSTRACT

In this paper, a new method to facilitate the design of Printed Ridge Gap Waveguide (PRGW) structures is introduced. One of the main difficulties in designing such structures is related to their simulation process which is really time and energy-consuming. Therefore, a suitable boundary condition is considered to bring about the primary structure without involving the bed of nails or mushroom unit cells. Using this technique, a wideband PRGW 3 dB hybrid double-box coupler is designed to serve in mm-wave frequencies at a center frequency of 30 GHz, which can be deployed for the next generation of mobile communication. The designed coupler provides a wide matching and isolation bandwidth with low output amplitude imbalance, which is unique in comparison with current couplers. The prototype of the proposed coupler is fabricated and measured where the simulation and measurement results show a good agreement indicating the strength of the proposed method in PRGW structure design as well. The measured results show the couplers achieve better than 10-dB return loss and isolation over the frequency range from 25 to 40 GHz (46% BW) with the power-split unbalance and phase error within ± 1 dB and ± 5°, respectively. In addition, square mushrooms are chosen here to satisfy the high impedance surface. Not only do they bring about larger stop bandwidth, but also their configuration facilitates the arrangement of them around the coupler. The proposed design has superb characteristics such as low profile, low loss, and easy integration with microwave circuits and systems that can be suitable for designing mm-wave beamforming networks.

9.
Sci Rep ; 12(1): 13689, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953546

ABSTRACT

In this paper, a dual-band implantable rectenna is proposed for recharging and operating biomedical implantable devices at 0.915 and 2.45 GHz. The rectenna system consists of a compact dual-band antenna based on a meandered-resonator as well as efficient dual-band rectifier circuit. Both components (antenna and rectifier) are integrated inside a capsule device to simulate and experimentally validate the rectenna. The antenna occupies lower volume ([Formula: see text] [Formula: see text]), where compactness is achieved using meandered geometry and a slotted ground plane. It maintains quasi-omnidirectional radiation patterns and peak realized gains of -22.1 dBi (915 MHz) and -19.6 dBi (2.45 GHz); thus, its capability is enhanced to harvest the ambient energy from multiple directions. Moreover, a dual-band rectifier is designed using a dual-branch matching network (an L-matching network and open-circuited stub in each branch) with a radio frequency (RF) to direct current (DC) conversion efficiency of 79.9% for the input power of 1 dBm (lower band: 0.915 GHz) and 72.8% for the input power of 3 dBm (upper band: 2.45 GHz). To validate the concept of the rectenna, the implantable antenna and rectifier are fabricated and attached together inside a capsule device, with the measured results verifying the simulated responses. The proposed rectenna efficiently rectifies two RF signals and effectively superimposes on a single load, thus, providing a distinct advantage compared to single-band rectennas. To the best of the authors' knowledge, this is the first-ever implantable rectenna to perform dual-band RF signal rectification.


Subject(s)
Radio Waves , Wireless Technology , Electricity , Equipment Design , Prostheses and Implants
10.
Sci Rep ; 11(1): 11825, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34083671

ABSTRACT

Matching the antenna's impedance to the RF-front-end of a wireless communications system is challenging as the impedance varies with its surround environment. Autonomously matching the antenna to the RF-front-end is therefore essential to optimize power transfer and thereby maintain the antenna's radiation efficiency. This paper presents a theoretical technique for automatically tuning an LC impedance matching network that compensates antenna mismatch presented to the RF-front-end. The proposed technique converges to a matching point without the need of complex mathematical modelling of the system comprising of non-linear control elements. Digital circuitry is used to implement the required matching circuit. Reliable convergence is achieved within the tuning range of the LC-network using control-loops that can independently control the LC impedance. An algorithm based on the proposed technique was used to verify its effectiveness with various antenna loads. Mismatch error of the technique is less than 0.2%. The technique enables speedy convergence (< 5 µs) and is highly accurate for autonomous adaptive antenna matching networks.

11.
Sensors (Basel) ; 21(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067355

ABSTRACT

A novel circular polarized dielectric antenna array (DRA) for millimeter-wave applications at 30 GHz is presented in this paper. The unit element array is a flower-shaped DRA fed with a cross slot. To obtain circular polarization, a sequential network combined with the cross slots is used to feed the 2×2 array. The prototype of the proposed antenna array is fabricated and measured to obtain a wide resonance bandwidth from 27 GHz to 38 GHz frequency band. Furthermore, this left-hand polarized antenna array has achieved a peak gain of 9.5 dBi with 3-dB axial ratio at 30 GHz. The proposed DRA array with wideband resonance and gain bandwidth has the potential to be used for millimeter-wave wireless communications at the 30 GHz band.

12.
Sci Rep ; 11(1): 7472, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33811233

ABSTRACT

The paper demonstrates an effective technique to significantly enhance the bandwidth and radiation gain of an otherwise narrowband composite right/left-handed transmission-line (CRLH-TL) antenna using a non-Foster impedance matching circuit (NF-IMC) without affecting the antenna's stability. This is achieved by using the negative reactance of the NF-IMC to counteract the input capacitance of the antenna. Series capacitance of the CRLH-TL unit-cell is created by etching a dielectric spiral slot inside a rectangular microstrip patch that is grounded through a spiraled microstrip inductance. The overall size of the antenna, including the NF-IMC at its lowest operating frequency is 0.335λ0 × 0.137λ0 × 0.003λ0, where λ0 is the free-space wavelength at 1.4 GHz. The performance of the antenna was verified through actual measurements. The stable bandwidth of the antenna for |S11|≤ - 18 dB is greater than 1 GHz (1.4-2.45 GHz), which is significantly wider than the CRLH-TL antenna without the proposed impedance matching circuit. In addition, with the proposed technique the measured radiation gain and efficiency of the antenna are increased on average by 3.2 dBi and 31.5% over the operating frequency band.

13.
Sci Rep ; 8(1): 10293, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29968811

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

14.
Sci Rep ; 8(1): 5300, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29593220

ABSTRACT

We present two transmission-mode dielectric Fresnel-Zone Plate Lens (FZPL) antennas for use within the V-band spectrum. The proposed FZPs are realized via pure plastic material using two different additive manufacturing processes. The proposed FZP lenses are designed with half (λ/2) and quarter (λ/4) phase correction rings at 60-GHz with 30λ0 diameter, where λ0 is the free-space wavelength. The permittivity effect for lens sub-zones is controlled by material porosity in cube-shaped structures. The 3D printed zone plate lenses are built using additive manufacturing plastic materials with a thickness of λ0 and constant relative permittivities equal to 2.76 and 3.6. Different types of antenna with cos n -like radiation patterns as lens illuminators are analyzed on the vertical plane of the flat lenses to have a high efficiency over the considered operating band. Simulations and experimental measurements show a reasonably close match, therefore allowing for a reliable predictability.

15.
Sensors (Basel) ; 17(7)2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28678178

ABSTRACT

A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...