Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1332290, 2024.
Article in English | MEDLINE | ID: mdl-38558787

ABSTRACT

Biomaterials containing citric acid as a building unit show potential for use as blood vessel and skin tissue substitutes. The success in commercializing implants containing a polymer matrix of poly(1,8-octanediol citrate) provides a rationale for exploring polycitrates based on other diols. Changing the aliphatic chain length of the diol allows functional design strategies to control the implant's mechanical properties, degradation profile and surface energy. In the present work, poly(1,2-ethanediol citrate) was synthesized and used as an additive to polylactide in the electrospinning process. It was established that the content of polycitrate greatly influences the nonwovens' properties: an equal mass ratio of polymers resulted in the best morphology. The obtained nonwovens were characterized by surface hydrophilicity, tensile strength, and thermal properties. L929 cell cultures were carried out on their surface. The materials were found to be non-cytotoxic and the degree of porosity was suitable for cell colonization. On the basis of the most important parameters for assessing the condition of cultured cells (cell density and viability, cell metabolic activity and lactate dehydrogenase activity), the potential of PLLA + PECit nonwovens for application in tissue engineering was established.

2.
Macromol Rapid Commun ; 45(2): e2300452, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37838916

ABSTRACT

Polymers are of great interest for medical and cosmeceutical applications. The current trend is to combine materials of natural and synthetic origin in order to obtain products with appropriate mechanical strength and good biocompatibility, additionally biodegradable and bioresorbable. Citric acid, being an important metabolite, is an interesting substance for the synthesis of materials for biomedical applications. Due to the high functionality of the molecule, it is commonly used in biomaterials chemistry as a crosslinking agent. Among citric acid-based biopolyesters, poly(1,8-octanediol citrate) is the best known. It shows application potential in soft tissue engineering. This work focuses on a much less studied polyester, poly(1,3-propanediol citrate). Porous and non-porous materials based on the synthesized polyesters are prepared and characterized, including mechanical, thermal, and surface properties, morphology, and degradation. The main focus is on assessing the biocompatibility and antimicrobial properties of the materials.


Subject(s)
Anti-Infective Agents , Citric Acid , Propylene Glycols , Citric Acid/chemistry , Citrates/chemistry , Biocompatible Materials/chemistry , Polyesters/chemistry , Tissue Engineering , Propylene Glycol , Anti-Infective Agents/pharmacology
3.
Gels ; 9(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37888360

ABSTRACT

Electrospinning is a process that has attracted significant interest in recent years. It provides the opportunity to produce nanofibers that mimic the extracellular matrix. As a result, it is possible to use the nonwovens as scaffolds characterized by high cellular adhesion. This work focused on the synthesis of poly(glycerol itaconate) (PGItc) and preparation of nonwovens based on PGItc gels and polylactide. PGItc gels were synthesized by a reaction between itaconic anhydride and glycerol. The use of a mixture of PGItc and PLA allowed us to obtain a material with different properties than with stand-alone polymers. In this study, we present the influence of the chosen ratios of polymers and the OH/COOH ratio in the synthesized PGItc on the properties of the obtained materials. The addition of PGItc results in hydrophilization of the nonwovens' surface without disrupting the high porosity of the fibrous structure. Spectral and thermal analyzes are presented, along with SEM imagining. The preliminary cytotoxicity research showed that nonwovens were non-cytotoxic materials. It also helped to pre-determine the potential application of PGItc + PLA nonwovens as subcutaneous tissue fillers or drug delivery systems.

4.
Pharmaceutics ; 15(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37514176

ABSTRACT

Skin wound healing is one of the most challenging processes for skin reconstruction, especially after severe injuries. In our study, nanofiber membranes were prepared for wound healing using an electrospinning process, where the prepared nanofibers were made of different weight ratios of polycaprolactone and bioactive glass that can induce the growth of new tissue. The membranes showed smooth and uniform nanofibers with an average diameter of 118 nm. FTIR and XRD results indicated no chemical interactions of polycaprolactone and bioactive glass and an increase in polycaprolactone crystallinity by the incorporation of bioactive glass nanoparticles. Nanofibers containing 5% w/w of bioactive glass were selected to be loaded with atorvastatin, considering their best mechanical properties compared to the other prepared nanofibers (3, 10, and 20% w/w bioactive glass). Atorvastatin can speed up the tissue healing process, and it was loaded into the selected nanofibers using a dip-coating technique with ethyl cellulose as a coating polymer. The study of the in vitro drug release found that atorvastatin-loaded nanofibers with a 10% coating polymer revealed gradual drug release compared to the non-coated nanofibers and nanofibers coated with 5% ethyl cellulose. Integration of atorvastatin and bioactive glass with polycaprolactone nanofibers showed superior wound closure results in the human skin fibroblast cell line. The results from this study highlight the ability of polycaprolactone-bioactive glass-based fibers loaded with atorvastatin to stimulate skin wound healing.

5.
Materials (Basel) ; 16(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37176317

ABSTRACT

This article presents the influence of severe plastic deformation by hydrostatic extrusion (HE) on the thermal and structural properties of polyamide 6 (PA6). During the hydrostatic extrusion process, a fibrous structure oriented along the extrusion direction is formed, which was visualized during microscopic observations. The degree of crystallinity was analyzed by differential scanning calorimetry (DSC). Wide-angle X-ray scattering diffraction (WAXS) analysis was used to partially characterize the PA6 structure after the HE process. The contents of various forms of the crystalline phase in PA6 samples before and after the HE process were analyzed in fragments of spectroscopy in infrared (FTIR). The favorable properties of PA6 after the HE process were obtained after deformation under conditions generating an adiabatic temperature higher than the glass transition temperature and lower than the temperature of the onset of melting of the crystalline phase. Thermal analysis using DSC allowed us to conclude that in the PA6 after the HE process generating deformations in the range of 0.68-1.56, the proportion of the crystalline phase α increases in PA6. As the deformation increases in the HE process, the crystalline phase proportion increases by 12% compared to the initial material (before HE). The glass transition temperature of PA6 is ca. 50.6 °C, reduced for the sample after the HE process at a small deformation of 0.68 (PA6_0.68) to ca. 44.2 °C. For other samples, Tg is ca. 53.2-53.5 °C. As a result of the analysis of WAXS diffractograms of PA6 samples after various deformations in the HE process, the presence of typical peaks of phases α1 and α2 and γ was observed. The results of the FTIR spectroscopic analysis confirm these observations that as the deformation increases, the proportion of the crystalline phase α increases.

6.
Materials (Basel) ; 16(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36676400

ABSTRACT

We present the deposition and characterization of tungsten-tantalum diboride (W,Ta)B2 coatings prepared by the high-power impulse magnetron sputtering technique. We evaluated the influence of pulse duration and substrate bias on the properties of (W,Ta)B2 films. A high hardness of up to 35 GPa measured by nanoindentation was simultaneously obtained with good elastic properties. Changing the pulse duration greatly affected the B/(W+Ta) atomic ratio, which influenced the properties of the coatings. The deposited films are thermally stable at up to 1000 °C in vacuum and are able to withstand oxidation at 500 °C.

7.
Small ; 18(2): e2104971, 2022 01.
Article in English | MEDLINE | ID: mdl-34802179

ABSTRACT

The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.


Subject(s)
Nanofibers , Biocompatible Materials/chemistry , Extracellular Matrix/chemistry , Lasers , Nanofibers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
8.
Materials (Basel) ; 14(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500919

ABSTRACT

Three series of tests performed on fibre-reinforced gypsum composites are described herein. Sheep wool fibres and hemp fibres were used as reinforcement. The aim was to evaluate the capability of these biomaterials to enhance the fracture toughness of the gypsum matrix. The mechanical properties were measured by means of flexural tests on small specimens, whereas scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction were used to analyse the microstructure and composition of the fibres and of the gypsum composites. As a result, wool fibres were shown to improve the mechanical performance of the gypsum matrix, better than hemp fibres. This is due to the high adhesion at the interface of the fibre and gypsum matrix, because the latter tends to roughen the surface of the wool and, consequently to increase the bond strength. This preliminary research carried out shows that this type of biofiber-a waste material-can be considered a promising building material in sustainable and environmentally friendly engineering.

9.
Materials (Basel) ; 14(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062888

ABSTRACT

An improved method for the production of luminescent carbon nanoparticles is proposed in this work. The new method overcomes the disadvantages of commonly used approaches. It involves two-stage laser ablation in water and in aqueous solutions, where the first stage is the laser ablation of a graphite target and the second is the shredding of particles produced in the first step. The two-stage method offers the optimization of the laser pulse fluence for the performance of each process. It was found that the two-stage process of laser ablation allows producing photoluminescent carbon structures in pure water. The additional reagent may be added either in the first or second stage. The first stage performed in pure water allows avoiding the contamination of the target. Moreover, it simplifies the identification of the origin of photoluminescence. Two synthesis routes for the preparation of carbon nanoparticles by the proposed method using pure water as well as urea aqueous solution are investigated. It was found that the use of urea as a reagent results in luminescence properties similar to those obtained with other more hazardous amine-based reagents. The influence of the synthesis approach and process parameters on the structural and luminescent properties of nanoparticles is also explored in this work.

10.
J Biomed Mater Res A ; 107(11): 2447-2457, 2019 11.
Article in English | MEDLINE | ID: mdl-31269319

ABSTRACT

A surface of polymeric nonwovens may be coated with various types of nanoparticles for medical applications, filtration, and so forth. However, quite often methods used for surface modification are difficult to scale up or are not applicable for polymers. In this article, we present one-step process enabling nonwovens functionalization. Poly(l-lactide-co-glicolide) (PLGA) nonwovens were prepared by electrospinning process and coated with hydroxyapatite nanoparticles (HAp) using ultrasonic processing. The effect of the process was evaluated with various techniques. HAp layer was successfully attached without loss of structural properties of HAp or PLGA nonwovens. The analysis confirmed the decrease of hydrophobicity of coated nonwoven, as well as its biocompatibility, making this material valuable from the perspective of medical applications. The sonochemical functionalization of polymeric nonwovens may be considered as an effective and economic method, enhancing surface properties of electrospun nonwovens for various applications.


Subject(s)
Coated Materials, Biocompatible , Materials Testing , Polylactic Acid-Polyglycolic Acid Copolymer , Ultrasonic Waves , Cell Line , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology
11.
Polymers (Basel) ; 11(12)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888267

ABSTRACT

Two types of poly(glycerol sebacate) (PGS) prepolymers were synthesized and electrospun with poly(l-lactic acid) (PLA), resulting in bicomponent nonwovens. The obtained materials were pre-heated in a vacuum, at different times, to crosslink PGS and investigate morphological and structural dependencies in that polymeric, electrospun system. As both PGS and PLA are sensitive to pre-heating (crosslinking) conditions, research concerns both components. More interest is focused on the properties of PGS, considering further research for mechanical properties and subsequent experiments with PGS synthesis. Electrospinning of PGS blended with PLA does not bring difficulties, but obtaining elastomeric properties of nonwovens is problematic. Even though PGS has many potential advantages over other polyesters when soft tissue engineering is considered, its full utilization via the electrospinning process is much harder in practice. Further investigations are ongoing, especially with the promising PGS prepolymer with a higher esterification degree and its variations.

SELECTION OF CITATIONS
SEARCH DETAIL
...