Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 31(1): 013112, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33754782

ABSTRACT

When applied to dynamical systems, both classical and quantum, time periodic modulations can produce complex non-equilibrium states which are often termed "chaotic." Being well understood within the unitary Hamiltonian framework, this phenomenon is less explored in open quantum systems. Here, we consider quantum chaotic states emerging in a leaky cavity when the intracavity photonic mode is coherently pumped with the pumping intensity varying periodically in time. We show that a single spin when placed inside the cavity and coupled to the mode can moderate transitions between regular and chaotic regimes-that are identified by using quantum Lyapunov exponents or features of photon emission statistics-and thus can be used to control the degree of chaos.

2.
Chaos ; 30(2): 023107, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32113249

ABSTRACT

Open quantum systems can exhibit complex states, for which classification and quantification are still not well resolved. The Kerr-nonlinear cavity, periodically modulated in time by coherent pumping of the intracavity photonic mode, is one of the examples. Unraveling the corresponding Markovian master equation into an ensemble of quantum trajectories and employing the recently proposed calculation of quantum Lyapunov exponents [I. I. Yusipov et al., Chaos 29, 063130 (2019)], we identify "chaotic" and "regular" regimes there. In particular, we show that chaotic regimes manifest an intermediate power-law asymptotics in the distribution of photon waiting times. This distribution can be retrieved by monitoring photon emission with a single-photon detector so that chaotic and regular states can be discriminated without disturbing the intracavity dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...