Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Bioprint ; 6(2): 260, 2020.
Article in English | MEDLINE | ID: mdl-32782990

ABSTRACT

Recently, there has been a proliferation of soft robots and actuators that exhibit improved capabilities and adaptability through three-dimensional (3D) bioprinting. Flexibility and shape recovery attributes of stimuli-responsive polymers as the main components in the production of these dynamic structures enable soft manipulations in fragile environments, with potential applications in biomedical and food sectors. Topology optimization (TO), when used in conjunction with 3D bioprinting with optimal design features, offers new capabilities for efficient performance in compliant mechanisms. In this paper, multimaterial TO analysis is used to improve and control the bending performance of a bioprinted soft actuator with electrolytic stimulation. The multimaterial actuator performance is evaluated by the amplitude and rate of bending motion and compared with the single material printed actuator. The results demonstrated the efficacy of multimaterial 3D bioprinting optimization for the rate of actuation and bending.

2.
ACS Nano ; 8(4): 3947-54, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24617647

ABSTRACT

Metal tungstates (with general formula MWO4) are functional materials with a high potential for a diverse set of applications ranging from low-dimensional magnetism to chemical sensing and photoelectrocatalytic water oxidation. For high level applications, nanoscale control of film growth is necessary, as well as a deeper understanding and characterization of materials properties at reduced dimensionality. We succeeded in fabricating and characterizing a two-dimensional (2-D) copper tungstate (CuWO4). For the first time, the atomic structure of an ultrathin ternary oxide is fully unveiled. It corresponds to a CuWO4 monolayer arranged in three sublayers with stacking O-W-O/Cu from the interface. The resulting bidimensional structure forms a robust framework with localized regions of anisotropic flexibility. Electronically it displays a reduced band gap and increased density of states close to the Fermi level with respect to the bulk compound. These unique features open a way for new applications in the field of photo- and electrocatalysis, while the proposed synthesis method represents a radically new and general approach toward the fabrication of 2-D ternary oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...