Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 10(3): 1323-1334, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38330191

ABSTRACT

Polymers as biomaterials possess favorable properties, which include corrosion resistance, light weight, biocompatibility, ease of processing, low cost, and an ability to be easily tailored to meet specific applications. However, their inherent low X-ray attenuation, resulting from the low atomic numbers of their constituent elements, i.e., hydrogen (1), carbon (6), nitrogen (7), and oxygen (8), makes them difficult to visualize radiographically. Imparting radiopacity to radiolucent polymeric implants is necessary to enable noninvasive evaluation of implantable medical devices using conventional imaging methods. Numerous studies have undertaken this by blending various polymers with contrast agents consisting of heavy elements. The selection of an appropriate contrast agent is important, primarily to ensure that it does not cause detrimental effects to the relevant mechanical and physical properties of the polymer depending upon the intended application. Furthermore, its biocompatibility with adjacent tissues and its excretion from the body require thorough evaluation. We aimed to summarize the current knowledge on contrast agents incorporated into synthetic polymers in the context of implantable medical devices. While a single review was found that discussed radiopacity in polymeric biomaterials, the publication is outdated and does not address contemporary polymers employed in implant applications. Our review provides an up-to-date overview of contrast agents incorporated into synthetic medical polymers, encompassing both temporary and permanent implants. We expect that our results will significantly inform and guide the strategic selection of contrast agents, considering the specific requirements of implantable polymeric medical devices.


Subject(s)
Contrast Media , Prostheses and Implants , Biocompatible Materials , Corrosion , Polymers
2.
Data Brief ; 50: 109574, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37808546

ABSTRACT

Machining is an essential part of modern manufacturing. During machining, the wear of cutting tools increases, eventually impairing product quality and process stability. Determining when to change a tool to avoid these consequences, while still utilizing most of a tool's lifetime is challenging, as the tool lifetime can vary by more than 100% despite constant process parameters [1]. To account for these variations, all tools are usually changed after a predefined period of time. However, this strategy wastes a significant proportion of the remaining lifetime of most tools. By monitoring the wear of tools, all tools can potentially be used until their individual end of life. Research, development, and assessment of such monitoring methods require large amounts of data. Nevertheless, only very few datasets are publicly available. The presented dataset provides labeled, multivariate time series data of milling processes with varying tool wear and for varying machine tools. The width of the flank wear land VB is used as a degradation metric. A total of nine end milling cutters were worn from an unused state to end of life (VB ≈ 150 µm) in 3-axis shoulder milling of cast iron 600-3/S. The tools were of the same model (solid carbide end milling cutter, 4 edges, coated with TiN-TiAlN) but from different batches. Experiments were conducted on three different 5-axis milling centers of a similar size. Workpieces, experimental setups, and process parameters were identical on all of the machine tools. The process forces were recorded with a dynamometer with a sample rate of 25 kHz. The force or torque of the spindle and feed drives, as well as the position control deviation of feed drives, were recorded from the machine tool controls with a sample rate of 500 Hz. The dataset holds a total of 6,418 files labeled with the wear (VB), machine tool (M), tool (T), run (R), and cumulated tool contact time (C). This data could be used to identify signal features that are sensitive to wear, to investigate methods for tool wear estimation and tool life prediction, or to examine transfer learning strategies. The data thereby facilitates research in tool condition monitoring and predictive maintenance in the domain of production technology.

3.
Materials (Basel) ; 15(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36295208

ABSTRACT

Laser-based thermoplastic automated fiber placement (TAFP) is nowadays mainly used to produce pure carbon fiber-reinforced plastic (CFRP) structures. This paper investigates the feasibility of a novel application: The deposition of thermoplastic prepreg tapes onto a thermoplastic foam for the production of thermoplastic sandwich structures. Therefore, simple deposition experiments of thermoplastic PEEK/CF prepreg tapes on a PEI closed-cell foam were carried out. 3D surface profile measurements and peel tests according to DIN EN 28510-1 standard were used to investigate the joining area and bonding quality. The results show that a cohesive bond is formed between the deposited tapes and the foam core, however the foam structure in the area of the deposited tapes deforms in dependence of the process parameters, and increasingly with higher deposition temperatures. Due to the deformations that occur during tape deposition, the thermomechanical foam behavior under the TAFP process conditions was investigated in more detail in a subsequent study for an extensive parameter space using a simple experimental setup. Results show that for suitable process parameters, namely a short contact time and a high temperature, the foam deformation can be minimized with the simultaneous formation of a thin melting layer required for cohesive bonding. The inner foam core structure remains unaffected.

4.
Materials (Basel) ; 15(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35329638

ABSTRACT

The need for rare resources, such as tungsten or cobalt, combined with the high energy requirements to produce cutting materials, is forcing research and development to work out environmentally friendly alternatives. Natural rocks could be an alternative since they are available in large quantities worldwide, have a potentially suitable property profile, and do not require energy-intensive processes to make them usable as cutting materials. However, there are only a few studies on the usability and suitability of natural rocks as cutting materials for machining processes. Therefore, in this article, inserts made of natural rocks were ground and used in turning operations. First, the properties of various natural rocks were determined, as were the tool properties after grinding. Then, the tool load and wear during the machining process were recorded and evaluated to assess the potential applications of this alternative cutting material more accurately. It is therefore becoming apparent that flint and quartz are suitable for use as alternative cutting materials and should be further researched.

5.
Sci Rep ; 12(1): 1012, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35046500

ABSTRACT

Polycrystalline cubic boron nitride is a very hard material. Machining of this material is performed by grinding with diamond tools. Due to its high hardness, grinding tools are subjected to severe microscopic and macroscopic tool wear. This wear leads to short tool life and results in high effort in conditioning the abrasive layer. Contrary to the usual conditioning of diamond grinding wheels with diamond dressing tools, this study investigates a conditioning process based entirely on the use of white corundum cup rolls. These conditioning tools allow the in-process face plunge conditioning of vitrified bond diamond grinding tools. The circumferential speed of the conditioning tool and the average grain diameter of the corundum are identified as the main factors influencing the topography of the generated grinding layer. To describe the performance of the conditioning process, a specific conditioning removal rate [Formula: see text] is derived. This parameter represents a cumulated variable that allows a comparison of different conditioning strategies. It is shown that an increase in [Formula: see text] significantly counteracts microscopic wear on the abrasive layer. Therefore, optimized process parameters enable the process of in-process conditioning to significantly reduce wear on the grinding tool without increasing the process time or the non-productive time.

6.
Materials (Basel) ; 13(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066567

ABSTRACT

During metal cutting, high temperatures of several hundred-degree Celsius occur locally at the cutting edge, which greatly impacts tool wear and life. Not only the cutting parameters, but also the tool material's properties influence the arising cutting temperature which in turn alters the mechanical properties of the tool. In this study, the hardness and thermal conductivity of cemented tungsten carbides were investigated in the range between room temperature and 1000 °C. The occurring temperatures close to the cutting edge were measured with two color pyrometry. The interactions between cemented carbide tool properties and cutting process parameters, including cutting edge rounding, are discussed. The results show that cemented carbides with higher thermal conductivities lead to lower temperatures during cutting. As a result, the effective hardness at the cutting edge can be strongly influenced by the thermal conductivity. The differences in hardness measured at room temperature can be equalized or evened out depending on the combination of hardness and thermal conductivity. This in turn has a direct influence on tool wear. Wear is also influenced by the softening of the workpiece, so that higher cutting temperatures can lead to less wear despite the same effective hardness.

7.
Biomed Eng Online ; 12: 84, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23988155

ABSTRACT

BACKGROUND: Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. METHODS: A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. RESULTS: The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. CONCLUSIONS: It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices.


Subject(s)
Biocompatible Materials/chemistry , Ceramics/chemistry , Knee Prosthesis , Materials Testing/methods , Oxides/chemistry , Prosthesis Design/methods , Surface Properties
8.
Biomed Eng Online ; 11: 12, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22413949

ABSTRACT

BACKGROUND: In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery. METHODS: ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate. After 14, 28 and 42 days of immersion the ZEK100 plates were mechanically tested via four point bending test. The surfaces of the immersed specimens were characterized by SEM, EDX and XRD. RESULTS: The four point bending test displayed an increased bending strength after 6 weeks immersion compared to the 2 week group and 4 week group. The characterization of the surface revealed the presence of high amounts of O, P and Ca on the surface and small Mg content. This indicates the precipitation of calcium phosphates with low solubility on the surface of the ZEK100 plates. CONCLUSIONS: The results of the present in vitro study indicate that ZEK100 is a potential candidate for degradable orthopedic implants. Further investigations are needed to examine the degradation behavior.


Subject(s)
Alloys/chemistry , Bicarbonates/chemistry , Biocompatible Materials/chemistry , Isotonic Solutions/chemistry , Magnesium/chemistry , Corrosion , Hydrodynamics , Immersion , Mechanical Phenomena , Surface Properties
9.
J Mater Sci Mater Med ; 23(3): 649-55, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22210311

ABSTRACT

Magnesium alloys have been in the focus of research in recent years as degradable biomaterial. The purpose of this study was the biomechanical characterisation of MgCa0.8-screws. The maximum pull out force of screws was determined in a synthetic bone without corrosion and after fixed intervals of corrosion: 24, 48, 72 and 96 h. This in vitro study has been carried out with Hank's solution with a flow rate corresponding to the blood flow in natural bone. A maximum pull out force (F(max)) of 201.5 ± 9.3 N was measured without corrosion. The biomechanical parameter decreased by 30% after 96 h in corrosive medium compared to the non-corrosion group. A maximum load capacity of 28 ± 7.6 N/h was determined. Our biomechanical data suggests that this biodegradable screw provides a promising bone-screw-fixation and has great potential for medical application.


Subject(s)
Bone Screws , Calcium/chemistry , Magnesium/chemistry , Biomechanical Phenomena , Electrochemistry , In Vitro Techniques , Regional Blood Flow
10.
Arch Orthop Trauma Surg ; 131(2): 191-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20499243

ABSTRACT

INTRODUCTION: To mimic the impressive mechanical behavior of natural ceramics for technical or biomedical applications, interest has been focused on nacre, a natural composite consisting of imbricated aragonite platelets embedded in a protein matrix. Nacre is an ideal model material for implants, since it possesses favorable strength and toughness properties compared to the component materials of which it is composed. The focus of the present study was to test standardized parameters which are good indicators of the material's suitability as an implant material. MATERIALS AND METHODS: A three-point bending test was performed on polished nacre samples according to international standards for Young's modulus, bending strength and fracture toughness. A total of 60 nacre samples were tested, with 5 samples each in 4 states of hydration (dry, distilled water, 0.9% NaCl and sea water). As a basis for comparison, 10 samples of a newly developed bioceramic material were tested for fracture toughness. RESULTS: The fracture toughness of nacre tended to be higher for specimens conditioned in 0.9% NaCl than for dry specimens (5.3 ± 0.6 vs. 4.3 ± 0.7 MPam(1/2), p = 0.061). The fracture toughness of the bioceramic investigated was observed to be somewhat higher than nacre (5.8 ± 0.4 vs. 4.3 ± 0.7 MPam(1/2), p ≤ 0.001). DISCUSSION AND CONCLUSION: The increase in fracture toughness of hydrated nacre was not as large as would be expected based on the difference in stiffness of the matrix material after hydration that has been reported. Modulus and toughness were similar to published values and the fracture toughness observed was somewhat higher than reported for alumina implant ceramics, which are in use in total hip arthroplasty. In a direct comparison, we found that a newly developed alumina bioceramic material can in fact match nature in terms of fracture toughness.


Subject(s)
Biomimetic Materials , Materials Testing , Prosthesis Design , Hardness Tests
11.
Biomed Eng Online ; 9: 24, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20550669

ABSTRACT

BACKGROUND: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. METHODS: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. RESULTS: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. CONCLUSIONS: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.


Subject(s)
Arthroplasty, Replacement, Knee/methods , Materials Testing/instrumentation , Models, Biological , Motion , Ceramics , Cobalt , Femur , Materials Testing/methods , Polyethylene , Surface Properties , Tibia
12.
Stud Health Technol Inform ; 133: 75-82, 2008.
Article in English | MEDLINE | ID: mdl-18376015

ABSTRACT

A primary cause for revision operations of joint replacements is the implant loosening, due to immune reactions resulting from the agglomeration of polyethylene wear debris. Motivated by the successful application of bioceramic materials in hip joint prostheses, a trend towards the development of hard implant materials has occurred. Nonetheless in the area of total knee arthroplasty (TKA), modern efforts have still utilized polyethylene as the tibial-inlay joint component. The use of bioceramic hard-hard-pairings for total knee arthroplasty has been prevented by the complex kinematics and geometries required. Ceramics cannot cope with non-uniform loads, which suggests the need for new designs appropriate to the material. Furthermore, biomechanical requirements should be considered. A rolling-gliding wear simulator, which reproduces the movements and stresses of the knee joint on specimens of simplified geometry, has therefore been developed. High-precision machining processes for free formed bioceramic surfaces, with suitable grinding and polishing tools which adjust to constantly changing contact conditions, are essential. The goal is to put automated finishing in one clamping with five simultaneous controlled axes into practice. The developed manufacturing technologies will allow the advantageous bioceramic materials to be applied and accepted for more complex joint replacements such as knee prostheses.


Subject(s)
Arthroplasty, Replacement, Knee/instrumentation , Ceramics , Equipment Failure , Stress, Mechanical , Biomechanical Phenomena , Compressive Strength , Equipment Failure Analysis , Hardness , Humans , Materials Testing , Movement/physiology , Pilot Projects , Polyethylenes , Prosthesis Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...