Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Xenotransplantation ; 31(3): e12851, 2024.
Article in English | MEDLINE | ID: mdl-38747130

ABSTRACT

BACKGROUND: The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS: A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS: Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION: Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.


Subject(s)
Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Swine , Humans , Viruses/isolation & purification , Laboratories , Germany , Virus Diseases/diagnosis , Heart Transplantation , Heterografts/virology
2.
Chirurgie (Heidelb) ; 2024 May 15.
Article in German | MEDLINE | ID: mdl-38748210

ABSTRACT

Transplantation of genetically modified porcine hearts and kidneys could become a solution to the persistent shortage of human organ donors. Progress has been made in genetic engineering of donor pigs, preservation techniques after organ harvesting and immunosuppression using co-stimulation blockade with anti-CD40/CD40L monoclonal antibodies. Progress has also been made in in the development of methods that detect pathogenic porcine viruses and prevent their transmission to the recipient. As normal land breed pig organs continue to grow in the recipient to their original size, different pig breeds (such as Auckland Island pigs) are now used which reach a final size suitable for humans. Alternatively, a knock-out of the growth hormone receptor gene has been established, e.g., in the 10GM genetically modified pigs from Revivicor/United Therapeutics, USA. The first clinical pilot studies including patients suffering from terminal heart failure are expected to start in Germany in about 2 years.

3.
Xenotransplantation ; 31(2): e12858, 2024.
Article in English | MEDLINE | ID: mdl-38646921

ABSTRACT

One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well-suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.


Subject(s)
Genetic Variation , Swine , Transplantation, Heterologous , New Zealand , Swine/genetics , Animals , Male , Female , Humans , Heart/anatomy & histology , Heart/diagnostic imaging , Echocardiography , Genotype , Homozygote
4.
Xenotransplantation ; 31(2): e12842, 2024.
Article in English | MEDLINE | ID: mdl-38501706

ABSTRACT

BACKGROUND: As sequencing is becoming more broadly available, virus discovery continues. Small DNA viruses contribute to up to 60% of the overall virus load in pigs. Porcine circoviruses (PCVs) are small DNA viruses with a single-stranded circular genome. They are common in pig breeds and have not been properly addressed for their potential risk in xenotransplantation. Whereas PCV1 is non-pathogenic in pigs, PCV2 has been associated with various disease manifestations. Recently two new circoviruses have been described, PCV3 and PCV4. While PCV4 is currently present mainly in Asia, PCV3 is widely distributed, and has been identified in commercial pigs, wild boars, and pigs generated for xenotransplantation. In one case PCV3 was transmitted by pigs to baboons via heart transplantation. PCV3 pathogenicity in pigs was controversial initially, however, the virus was found to be associated with porcine dermatitis and nephropathy syndrome (PDNS), reproductive failure, and multisystemic inflammation. Inoculation studies with PCV3 infectious clones confirmed that PCV3 is pathogenic. Most importantly, recently discovered human circoviruses (CV) are closely related to PCV3. METHODS: Literature was evaluated and summarized. A dendrogram of existing circoviruses in pigs, humans, and other animal species was created and assessed at the species level. RESULTS: We found that human circoviruses can be divided into three species, human CV1, CV2, and CV3. Human CV2 and CV3 are closest to PCV3. CONCLUSIONS: Circoviruses are ubiquitous. This communication should create awareness of PCV3 and the newly discovered human circoviruses, which may be a problem for blood transfusions and xenotransplantation in immune suppressed individuals.


Subject(s)
Circoviridae Infections , Circovirus , Swine Diseases , Swine , Humans , Animals , Transplantation, Heterologous , Blood Transfusion , Phylogeny
6.
Microorganisms ; 12(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38399719

ABSTRACT

The successful advancement of xenotransplantation has led to the development of highly sensitive detection systems for the screening of potentially zoonotic viruses in donor pigs and preventing their transmission to the recipient. To validate these methods, genetically modified pigs generated for xenotransplantation, numerous minipigs and other pig breeds have been tested, thereby increasing our knowledge concerning the pig virome and the distribution of pig viruses. Of particular importance are the porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV) and the hepatitis E virus genotype 3 (HEV3). PCMV/PRV has been shown to reduce the survival time of pig transplants in non-human primates and was also transmitted in the first pig heart transplantation to a human patient. The main aim of this study was to determine the sensitivities of our methods to detect PCMV/PRV, HEV3, porcine lymphotropic herpesvirus-1 (PLHV-1), PLHV-2, PLHV-3, porcine circovirus 2 (PCV2), PCV3, PCV4 and porcine parvovirus 1 (PPV1) and to apply the methods to screen indigenous Greek black pigs. The high number of viruses found in these animals allowed for the evaluation of numerous detection methods. Since porcine endogenous retroviruses (PERVs) type A and B are integrated in the genome of all pigs, but PERV-C is not, the animals were screened for PERV-C and PERV-A/C. Our detection methods were sensitive and detected PCMV/PRV, PLHV-1, PLHV-1, PLHV-3, PVC3 and PERV-C in most animals. PPV1, HEV3, PCV4 and PERV-A/C were not detected. These data are of great interest since the animals are healthy and resistant to diseases.

7.
Microorganisms ; 12(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38257925

ABSTRACT

Auckland Island pigs represent an inbred population of feral pigs isolated on the sub-Antarctic island for over 100 years. The animals have been maintained under pathogen-free conditions in New Zealand; they are well characterized virologically and have been used as donor sources in first clinical trials of porcine neonatal islet cell transplantation for the treatment of human diabetes patients. The animals do not carry any of the xenotransplantation-relevant viruses, and in the first clinical trials, no porcine viruses, including porcine endogenous retroviruses (PERVs) were transmitted to the human recipients. PERVs pose a special risk in xenotransplantation, since they are part of the pig genome. When the copy number of PERVs in these animals was analyzed using droplet digital PCR and primers binding to a conserved region of the polymerase gene (PERVpol), a copy number typical for Western pigs was found. This confirms previous phylogenetic analyses of microsatellites as well as mitochondrial analyses showing a closer relationship to European pigs than to Chinese pigs. When kidney cells from very young piglets were analyzed, only around 20 PERVpol copies were detected. Using these cells as donors in somatic cell nuclear transfer (SCNT), animals were born showing PERVpol copy numbers between 35 and 56. These data indicate that Auckland Island pigs have a similar copy number in comparison with other Western pig breeds and that the copy number is higher in adult animals compared with cells from young piglets. Most importantly, PERV-C-free animals were selected and the absence of an additional eight porcine viruses was demonstrated.

8.
Article in English | MEDLINE | ID: mdl-38281060

ABSTRACT

Xenotransplantation using pig cells, tissues or organs is under development to alleviate the shortage of human donor organs. Meanwhile remarkably long survival times of pig organs in non-human primates were reported as well as the functionality of pig kidneys and hearts in brain-dead humans. Most importantly, two transplantations of pig hearts in patients were performed with survival times of the patients of 8 and 6 weeks. Xenotransplantation may be associated with the transmission of porcine microorganisms including viruses to the recipient. Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated like other viruses can. PERVs are able to infect certain human cells and pose therefore a risk for xenotransplantation. It is well known that retroviruses are able to induce tumors and immunodeficiencies. However, until now, PERV was not transmitted in all infection experiments using small animals and non-human primates, in all preclinical xenotransplantation trials in non-human primates and in all clinical trials in humans. In addition, several strategies including antiretrovirals, PERV-specific siRNA, vaccines and genome editing using CRISPR/Cas have been developed to prevent PERV transmission.

9.
Camb Q Healthc Ethics ; 33(1): 148-149, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36647695
10.
Thorac Cardiovasc Surg ; 72(4): 273-284, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38154473

ABSTRACT

This report comprises the contents of the presentations and following discussions of a workshop of the German Heart Transplant Centers in Martinsried, Germany on cardiac xenotransplantation. The production and current availability of genetically modified donor pigs, preservation techniques during organ harvesting, and immunosuppressive regimens in the recipient are described. Selection criteria for suitable patients and possible solutions to the problem of overgrowth of the xenotransplant are discussed. Obviously microbiological safety for the recipient and close contacts is essential, and ethical considerations to gain public acceptance for clinical applications are addressed. The first clinical trial will be regulated and supervised by the Paul-Ehrlich-Institute as the National Competent Authority for Germany, and the German Heart Transplant Centers agreed to cooperatively select the first patients for cardiac xenotransplantation.


Subject(s)
Graft Survival , Heart Transplantation , Heterografts , Immunosuppressive Agents , Transplantation, Heterologous , Animals , Heart Transplantation/adverse effects , Humans , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Treatment Outcome , Graft Rejection/prevention & control , Graft Rejection/immunology , Animals, Genetically Modified , Risk Factors , Germany , Swine , Patient Selection
11.
Xenotransplantation ; : e12835, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38088083

ABSTRACT

BACKGROUND: The porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV), is widely distributed in pig populations. It has been shown that PCMV/PRV was transmitted by pig xenotransplants to non-human primates, and significantly reduced the survival time of the recipient. PCMV/PRV was also transmitted during the first transplantation of a pig heart into a human patient. PCMV/PRV establishes a lifelong persistent infection (latency) in the host, is difficult to detect in this stage, and consequential poses a threat to future clinical xenotransplantations. Therefore, sensitive and specific methods and goal-oriented strategies how, when, and where to test should be used for screening donor pigs. METHODS: In this study we compared experimentally the PCMV/PRV detection methods including PCR-based (real-time PCR, nested PCR) and immunological methods (Western blot assay, ELISA) recently published by Halecker et al. (Sci. Rep. 2022;12(1):21545) and Fischer et al. (Xenotransplantation 2023:e12803). We also compared the antigens used for antibody detection (a recombinant protein and synthetic peptides corresponding to a conserved region of the glycoprotein B, gB). RESULTS: The published methods can be used for screening donor pigs, with the results being similar. The antigens used for the detection of PCMV/PRV-specific antibodies are almost identical and give comparable results. Overall, the optimal diagnostic tests, the samples used for testing and the time of sampling play a crucial role in preventing the transmission of PCMV/PRV during xenotransplantation. CONCLUSION: Sensitive methods are available to screen donor pigs for PCMV/PRV, but a rational application of a combination of PCR-based and immunological methods as well as rational detection strategies are important for the detection of the virus during latency.

12.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37602284

ABSTRACT

Exosomes are small extracellular vesicles that are secreted from cells. To characterize exosome fraction marker proteins of the tetraspanin family in particular, CD9, CD63, and CD81 are routinely used. CD63 expression constructs were employed to investigate the influence of the large extracellular loop (LEL) of CD63 on sorting into exosomes. When the LEL of CD63 fused with mCherry was deleted, the protein was no longer found in the purified exosome fraction. This finding demonstrates the importance of the LEL sequence for the recruitment of CD63 into exosomes.

13.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37485021

ABSTRACT

Lipopolysaccharide (LPS) contaminations may falsify immunological experiments and are crucial for pharmaceutical products because they cause life-threatening immune reactions. Here, we present interleukin-10 (IL-10) as a reliable marker to measure LPS contents when the readout of pro-inflammatory cytokines is not favored. This animal free source assay is able to detect LPS with a limit of detection (LOD) of 0.024 EU/ml by monitoring IL-10 secretions from isolated human peripheral blood mononuclear cells (PBMCs).

14.
Viruses ; 15(7)2023 07 24.
Article in English | MEDLINE | ID: mdl-37515304

ABSTRACT

Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. This makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate the appropriate virological methods to be used for the identification of microchimerism, first by screening for porcine cellular genes, and then how to detect infection of the host. Using porcine short interspersed nuclear sequences (SINEs), which have hundreds of thousands of copies in the pig genome, significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Lastly, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated and infection excluded in all animals. These methods can be used in future clinical trials.


Subject(s)
Chimerism , Endogenous Retroviruses , Humans , Swine , Animals , Papio , Endogenous Retroviruses/genetics , Transplantation, Heterologous , RNA
16.
PLoS One ; 18(6): e0281521, 2023.
Article in English | MEDLINE | ID: mdl-37319233

ABSTRACT

Dippity Pig Syndrome (DPS) is a well-known but rare complex of clinical signs affecting minipigs, which has not been thoroughly investigated yet. Clinically affected animals show acute appearance of red, exudating lesions across the spine. The lesions are painful, evidenced by arching of the back (dipping), and the onset of clinical signs is generally sudden. In order to understand the pathogenesis, histological and virological investigations were performed in affected and unaffected Göttingen Minipigs (GöMPs). The following DNA viruses were screened for using PCR-based methods: Porcine cytomegalovirus (PCMV), which is a porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses (PLHV-1, PLHV-2, PLHV-3), porcine circoviruses (PCV1, PCV2, PCV3, PCV4), porcine parvovirus 1 (PPV1), and Torque Teno sus viruses (TTSuV1, TTSuV2). Screening was also performed for integrated porcine endogenous retroviruses (PERV-A, PERV-B, PERV-C) and recombinant PERV-A/C and their expression as well as for the RNA viruses hepatitis E virus (HEV) and SARS-CoV-2. Eight clinically affected and one unaffected GöMPs were analyzed. Additional unaffected minipigs had been analyzed in the past. The analyzed GöMPs contained PERV-A and PERV-B integrated in the genome, which are present in all pigs and PERV-C, which is present in most, but not all pigs. In one affected GöMPs recombinant PERV-A/C was detected in blood. In this animal a very high expression of PERV mRNA was observed. PCMV/PRV was found in three affected animals, PCV1 was found in three animals with DPS and in the unaffected minipig, and PCV3 was detected in two animals with DPS and in the unaffected minipig. Most importantly, in one animal only PLHV-3 was detected. It was found in the affected and unaffected skin, and in other organs. Unfortunately, PLHV-3 could not be studied in all other affected minipigs. None of the other viruses were detected and using electron microscopy, no virus particles were found in the affected skin. No porcine virus RNA with exception of PERV and astrovirus RNA were detected in the affected skin by next generation sequencing. This data identified some virus infections in GöMPs with DPS and assign a special role to PLHV-3. Since PCMV/PRV, PCV1, PCV3 and PLHV-3 were also found in unaffected animals, a multifactorial cause of DPS is suggested. However, elimination of the viruses from GöMPs may prevent DPS.


Subject(s)
Betaherpesvirinae , COVID-19 , Endogenous Retroviruses , Swine , Animals , Swine, Miniature , Transplantation, Heterologous , SARS-CoV-2
18.
Arch Virol ; 168(2): 55, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36609605

ABSTRACT

Porcine cytomegalovirus (PCMV), a porcine roseolovirus (PRV) that is closely related to human herpesviruses 6 and 7, is commonly found in commercial pigs. PCMV/PRV is important in xenotransplantation, because in preclinical trials in which pig organs were transplanted into non-human primates, transmission of PCMV/PRV was shown to be associated with significantly reduced survival of the xenotransplants. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient worldwide and apparently contributed to the death of the patient. The prevalence of PCMV/PRV in wild boars is largely unknown. In this study, we screened wild boars from several areas of northern Italy and Germany to test for the presence of PCMV/PRV using PCR-based and Western blot assays. By Western blot analysis, 54% and 82% of Italian and German wild boars, respectively, were found to be PCMV/PRV positive, while 36% and 60%, respectively, tested positive by real-time polymerase chain reaction (PCR). These data indicate that the virus is common in German and Italian wild boars and that the Western blot assay detected a PCMV/PRV infection more often than did real-time PCR. The data also indicate that pigs raised for xenotransplantation should be protected from contact with materials from wild boars and commercial pigs.


Subject(s)
Cytomegalovirus Infections , Roseolovirus , Swine Diseases , Swine , Animals , Humans , Cytomegalovirus/genetics , Primates , Real-Time Polymerase Chain Reaction , Sus scrofa , Swine Diseases/epidemiology
19.
Viruses ; 15(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36680230

ABSTRACT

Microchimerism is the presence of cells in an individual that have originated from a genetically distinct individual. The most common form of microchimerism is fetomaternal microchimerism, i.e., cells from a fetus pass through the placenta and establish cell lineages within the mother. Microchimerism was also described after the transplantation of human organs in human recipients. Consequently, microchimerism may also be expected in xenotransplantation using pig cells or organs. Indeed, microchimerism was described in patients after xenotransplantations as well as in non-human primates after the transplantation of pig organs. Here, for the first time, a comprehensive review of microchimerism in xenotransplantation is given. Since pig cells contain porcine endogenous retroviruses (PERVs) in their genome, the detection of proviral DNA in transplant recipients may be misinterpreted as an infection of the recipient with PERV. To prevent this, methods discriminating between infection and microchimerism are described. This knowledge will be important for the interpretation of screening results in forthcoming human xenotransplantations.


Subject(s)
Endogenous Retroviruses , Swine , Humans , Animals , Transplantation, Heterologous/adverse effects , Endogenous Retroviruses/genetics , Chimerism , Primates , Proviruses/genetics
20.
Virol J ; 20(1): 15, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707837

ABSTRACT

BACKGROUND: Porcine cytomegalovirus (PCMV) is a porcine roseolovirus (PCMV/PRV) which is widely distributed in pigs. Transmission of PCMV/PRV in preclinical xenotransplantations was shown to significantly reduce the survival time of the pig transplants in non-human primates. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient. To analyze how PCMV/PRV could be introduced into pig breeds, especially considering cloned transgenic pigs, and subsequently spread in breeding facilities, we screened ovaries and derived materials which are used to perform somatic cell nuclear transfer (SCNT). METHODS: DNA was isolated from ovarian tissues, follicular fluids, oocytes with cumulus cells, denuded oocytes and parthenotes. A real-time PCR with PCMV/PRV-specific primers and a probe was performed to detect PCMV/PRV. Furthermore, a Western blot assay using a recombinant fragment of the gB protein of PCMV/PRV was performed to screen for virus-specific antibodies in the follicular fluids. RESULTS: PCMV/PRV was found by real-time PCR in ovarian tissues, in the follicular fluid and in oocytes. In parthenotes the virus could not be detected, most-likely due to the low amount of DNA used. By Western blot assay specific antibodies against PCMV/PRV were found in 19 of 20 analyzed follicular fluids. CONCLUSION: PCMV/PRV was found in ovarian tissues, in the follicular fluids and also in denuded oocytes, indicating that the virus is present in the animals of which the oocytes were taken from. Despite several washing steps of the denuded oocytes, which are subsequently used for microinjection or SCNT, the virus could still be detected. Therefore, the virus could infect oocytes during genetic modifications or stay attached to the surface of the oocytes, potentially infecting SCNT recipient animals.


Subject(s)
Cytomegalovirus , Roseolovirus , Female , Animals , Swine , Humans , Transplantation, Heterologous , Follicular Fluid , Roseolovirus/genetics , Ovary , Primates , Cloning, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...