Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Extremophiles ; 28(2): 19, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427139

ABSTRACT

Organic and inorganic cyanides are widely distributed in nature, yet not much is known about the ability of microorganisms to use these compounds as a source of nitrogen and/or carbon at high temperatures (>80 °C). Here we studied the capacity of organic and inorganic cyanides to support growth of an hyperthermophilic Pyrococcus strain isolated from Deception Island, Antarctica. This microorganism was capable of growing with aromatic nitriles, aliphatic nitriles, heterocyclic nitriles, amino aromatic nitriles and inorganic cyanides as nitrogen and/or carbon source. This is the first report of an hyperthermophilic microorganism able to incorporate these compounds in its nitrogen and carbon metabolism. Based on enzymatic activity and genomic information, it is possibly that cells of this Pyrococcus strain growing with nitriles or cyanide, might use the carboxylic acid and/or the ammonia generated through the nitrilase enzymatic activity, as a carbon and/or nitrogen source respectively. This work expands the temperature range at which microorganisms can use organic and inorganic cyanides to growth, having important implications to understand microbial metabolisms that can support life on Earth and the possibility to support life elsewhere.


Subject(s)
Cyanides , Pyrococcus , Cyanides/metabolism , Antarctic Regions , Nitriles , Carbon , Nitrogen
2.
Article in English | MEDLINE | ID: mdl-26973832

ABSTRACT

Several environmental samples from Antarctica were collected and enriched to search for microorganisms with nitrilase activity. A new thermostable nitrilase from a novel hyperthermophilic archaea Pyrococcus sp. M24D13 was purified and characterized. The activity of this enzyme increased as the temperatures rise from 70 up to 85°C. Its optimal activity occurred at 85°C and pH 7.5. This new enzyme shows a remarkable resistance to thermal inactivation retaining more than 50% of its activity even after 8 h of incubation at 85°C. In addition, this nitrilase is highly versatile demonstrating activity toward different substrates, such as benzonitrile (60 mM, aromatic nitrile) and butyronitrile (60 mM, aliphatic nitrile), with a specific activity of 3286.7 U mg(-1) of protein and 4008.2 U mg(-1) of protein, respectively. Moreover the enzyme NitM24D13 also presents cyanidase activity. The apparent Michaelis-Menten constant (K m) and V máx of this Nitrilase for benzonitrile were 0.3 mM and 333.3 µM min(-1), respectively, and the specificity constant (k cat/K m) for benzonitrile was 2.05 × 10(5) s(-1) M(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...