Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798570

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder and lacks disease-modifying therapies. We developed a Drosophila model for identifying novel glial-based therapeutic targets for PD. Human alpha-synuclein is expressed in neurons and individual genes are independently knocked down in glia. We performed a forward genetic screen, knocking down the entire Drosophila kinome in glia in alpha-synuclein expressing flies. Among the top hits were five genes (Ak1, Ak6, Adk1, Adk2, and awd) involved in adenosine metabolism. Knockdown of each gene improved locomotor dysfunction, rescued neurodegeneration, and increased brain adenosine levels. We determined that the mechanism of neuroprotection involves adenosine itself, as opposed to a downstream metabolite. We dove deeper into the mechanism for one gene, Ak1, finding rescue of dopaminergic neuron loss, alpha-synuclein aggregation, and bioenergetic dysfunction after glial Ak1 knockdown. We performed metabolomics in Drosophila and in human PD patients, allowing us to comprehensively characterize changes in purine metabolism and identify potential biomarkers of dysfunctional adenosine metabolism in people. These experiments support glial adenosine as a novel therapeutic target in PD.

2.
Am J Clin Nutr ; 119(5): 1143-1154, 2024 May.
Article in English | MEDLINE | ID: mdl-38428742

ABSTRACT

BACKGROUND: The health benefits of the Mediterranean diet (MedDiet) have been linked to the presence of beneficial gut microbes and related metabolites. However, its impact on the fecal metabolome remains poorly understood. OBJECTIVES: Our goal was to investigate the weight-loss effects of a 1-y lifestyle intervention based on an energy-reduced MedDiet coupled with physical activity (intervention group), compared with an ad libitum MedDiet (control group), on fecal metabolites, fecal microbiota, and their potential association with cardiovascular disease risk factors. METHODS: A total of 400 participants (200 from each study group), aged 55-75 y, and at high cardiovascular disease risk, were included. Dietary and lifestyle information, anthropometric measurements, blood biochemical parameters, and stool samples were collected at baseline and after 1 y of follow-up. Liquid chromatography-tandem mass spectrometry was used to profile endogenous fecal metabolites, and 16S amplicon sequencing was employed to profile the fecal microbiota. RESULTS: Compared with the control group, the intervention group exhibited greater weight loss and improvement in various cardiovascular disease risk factors. We identified intervention effects on 4 stool metabolites and subnetworks primarily composed of bile acids, ceramides, and sphingosines, fatty acids, carnitines, nucleotides, and metabolites of purine and the Krebs cycle. Some of these were associated with changes in several cardiovascular disease risk factors. In addition, we observed a reduction in the abundance of the genera Eubacterium hallii group and Dorea, and an increase in alpha diversity in the intervention group after 1 y of follow-up. Changes in the intervention-related microbiota profiles were also associated with alterations in different fecal metabolite subnetworks and some cardiovascular disease risk factors. CONCLUSIONS: An intervention based on an energy-reduced MedDiet and physical activity promotion, compared with an ad libitum MedDiet, was associated with improvements in cardiometabolic risk factors, potentially through modulation of the fecal microbiota and metabolome. This trial was registered at https://www.isrctn.com/ as ISRCTN89898870 (https://doi.org/10.1186/ISRCTN89898870).


Subject(s)
Diet, Mediterranean , Exercise , Feces , Gastrointestinal Microbiome , Life Style , Metabolome , Humans , Middle Aged , Male , Female , Aged , Feces/microbiology , Cardiovascular Diseases/prevention & control
3.
Cardiovasc Diabetol ; 23(1): 38, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245716

ABSTRACT

BACKGROUND: Legume consumption has been linked to a reduced risk of type 2 diabetes (T2D) and cardiovascular disease (CVD), while the potential association between plasma metabolites associated with legume consumption and the risk of cardiometabolic diseases has never been explored. Therefore, we aimed to identify a metabolite signature of legume consumption, and subsequently investigate its potential association with the incidence of T2D and CVD. METHODS: The current cross-sectional and longitudinal analysis was conducted in 1833 PREDIMED study participants (mean age 67 years, 57.6% women) with available baseline metabolomic data. A subset of these participants with 1-year follow-up metabolomics data (n = 1522) was used for internal validation. Plasma metabolites were assessed through liquid chromatography-tandem mass spectrometry. Cross-sectional associations between 382 different known metabolites and legume consumption were performed using elastic net regression. Associations between the identified metabolite profile and incident T2D and CVD were estimated using multivariable Cox regression models. RESULTS: Specific metabolic signatures of legume consumption were identified, these included amino acids, cortisol, and various classes of lipid metabolites including diacylglycerols, triacylglycerols, plasmalogens, sphingomyelins and other metabolites. Among these identified metabolites, 22 were negatively and 18 were positively associated with legume consumption. After adjustment for recognized risk factors and legume consumption, the identified legume metabolite profile was inversely associated with T2D incidence (hazard ratio (HR) per 1 SD: 0.75, 95% CI 0.61-0.94; p = 0.017), but not with CVD incidence risk (1.01, 95% CI 0.86-1.19; p = 0.817) over the follow-up period. CONCLUSIONS: This study identified a set of 40 metabolites associated with legume consumption and with a reduced risk of T2D development in a Mediterranean population at high risk of cardiovascular disease. TRIAL REGISTRATION: ISRCTN35739639.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diet, Mediterranean , Fabaceae , Humans , Female , Aged , Male , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cross-Sectional Studies , Risk Factors
4.
Diabetes Metab Res Rev ; 40(1): e3763, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287718

ABSTRACT

BACKGROUND: Several metabolites are individually related to incident type 2 diabetes (T2D) risk. We prospectively evaluated a novel T2D-metabolite pattern with a risk of progression to T2D among high-risk women with a history of gestational diabetes mellitus (GDM). METHODS: The longitudinal Nurses' Health Study II cohort enroled 116,429 women in 1989 and collected blood samples from 1996 to 1999. We profiled plasma metabolites in 175 incident T2D cases and 175 age-matched controls, all with a history of GDM before the blood draw. We derived a metabolomics score from 21 metabolites previously associated with incident T2D in the published literature by scoring according to the participants' quintile (1-5 points) of each metabolite. We modelled the T2D metabolomics score categorically in quartiles and continuously per 1 standard deviation (SD) with the risk of incident T2D using conditional logistic regression models adjusting for body mass index at the blood draw, and other established T2D risk factors. RESULTS: The percentage of women progressing to T2D ranged from 10% in the bottom T2D metabolomics score quartile to 78% in the highest score quartile. Adjusting for established T2D risk factors, women in the highest quartile had more than a 20-fold greater diabetes risk than women in the lowest quartile (odds ratios [OR] = 23.1 [95% CI = 8.6, 62.1]; p for trend<0.001). The continuous T2D metabolomics score was strongly and positively associated with incident T2D (adjusted OR = 2.7 per SD [95% CI = 1.9, 3.7], p < 0.0001). CONCLUSIONS: A pattern of plasma metabolites among high-risk women is associated with a markedly elevated risk of progression to T2D later in life.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Pregnancy , Humans , Female , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes, Gestational/diagnosis , Diabetes, Gestational/epidemiology , Risk Factors , Metabolomics , Odds Ratio
5.
Metabolism ; 151: 155742, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007148

ABSTRACT

BACKGROUND: Metabolic Syndrome (MetS) is a progressive pathophysiological state defined by a cluster of cardiometabolic traits. However, little is known about metabolites that may be predictors of MetS incidence or reversion. Our objective was to identify plasma metabolites associated with MetS incidence or MetS reversion. METHODS: The study included 1468 participants without cardiovascular disease (CVD) but at high CVD risk at enrollment from two case-cohort studies nested within the PREvención con DIeta MEDiterránea (PREDIMED) study with baseline metabolomics data. MetS was defined in accordance with the harmonized International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute criteria, which include meeting 3 or more thresholds for waist circumference, triglyceride, HDL cholesterol, blood pressure, and fasting blood glucose. MetS incidence was defined by not having MetS at baseline but meeting the MetS criteria at a follow-up visit. MetS reversion was defined by MetS at baseline but not meeting MetS criteria at a follow-up visit. Plasma metabolome was profiled by LC-MS. Multivariable-adjusted Cox regression models and elastic net regularized regressions were used to assess the association of 385 annotated metabolites with MetS incidence and MetS reversion after adjusting for potential risk factors. RESULTS: Of the 603 participants without baseline MetS, 298 developed MetS over the median 4.8-year follow-up. Of the 865 participants with baseline MetS, 285 experienced MetS reversion. A total of 103 and 88 individual metabolites were associated with MetS incidence and MetS reversion, respectively, after adjusting for confounders and false discovery rate correction. A metabolomic signature comprised of 77 metabolites was robustly associated with MetS incidence (HR: 1.56 (95 % CI: 1.33-1.83)), and a metabolomic signature of 83 metabolites associated with MetS reversion (HR: 1.44 (95 % CI: 1.25-1.67)), both p < 0.001. The MetS incidence and reversion signatures included several lipids (mainly glycerolipids and glycerophospholipids) and branched-chain amino acids. CONCLUSION: We identified unique metabolomic signatures, primarily comprised of lipids (including glycolipids and glycerophospholipids) and branched-chain amino acids robustly associated with MetS incidence; and several amino acids and glycerophospholipids associated with MetS reversion. These signatures provide novel insights on potential distinct mechanisms underlying the conditions leading to the incidence or reversion of MetS.


Subject(s)
Cardiovascular Diseases , Metabolic Syndrome , Humans , Metabolic Syndrome/complications , Incidence , Risk Factors , Cardiovascular Diseases/etiology , Amino Acids, Branched-Chain , Glycerophospholipids , Lipids
6.
Cardiovasc Diabetol ; 22(1): 340, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093289

ABSTRACT

BACKGROUND: Olive oil consumption has been inversely associated with the risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). However, the impact of olive oil consumption on plasma metabolites remains poorly understood. This study aims to identify plasma metabolites related to total and specific types of olive oil consumption, and to assess the prospective associations of the identified multi-metabolite profiles with the risk of T2D and CVD. METHODS: The discovery population included 1837 participants at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) trial with available metabolomics data at baseline. Olive oil consumption was determined through food-frequency questionnaires (FFQ) and adjusted for total energy. A total of 1522 participants also had available metabolomics data at year 1 and were used as the internal validation sample. Plasma metabolomics analyses were performed using LC-MS. Cross-sectional associations between 385 known candidate metabolites and olive oil consumption were assessed using elastic net regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson correlation coefficients were assessed between metabolite-weighted models and FFQ-derived olive oil consumption in each pair of training-validation data sets within the discovery sample. We further estimated the prospective associations of the identified plasma multi-metabolite profile with incident T2D and CVD using multivariable Cox regression models. RESULTS: We identified a metabolomic signature for the consumption of total olive oil (with 74 metabolites), VOO (with 78 metabolites), and COO (with 17 metabolites), including several lipids, acylcarnitines, and amino acids. 10-CV Pearson correlation coefficients between total olive oil consumption derived from FFQs and the multi-metabolite profile were 0.40 (95% CI 0.37, 0.44) and 0.27 (95% CI 0.22, 0.31) for the discovery and validation sample, respectively. We identified several overlapping and distinct metabolites according to the type of olive oil consumed. The baseline metabolite profiles of total and extra virgin olive oil were inversely associated with CVD incidence (HR per 1SD: 0.79; 95% CI 0.67, 0.92 for total olive oil and 0.70; 0.59, 0.83 for extra virgin olive oil) after adjustment for confounders. However, no significant associations were observed between these metabolite profiles and T2D incidence. CONCLUSIONS: This study reveals a panel of plasma metabolites linked to the consumption of total and specific types of olive oil. The metabolite profiles of total olive oil consumption and extra virgin olive oil were associated with a decreased risk of incident CVD in a high cardiovascular-risk Mediterranean population, though no associations were observed with T2D incidence. TRIAL REGISTRATION: The PREDIMED trial was registered at ISRCTN ( http://www.isrctn.com/ , ISRCTN35739639).


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diet, Mediterranean , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Olive Oil , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cross-Sectional Studies , Risk Factors
7.
Nature ; 616(7956): 339-347, 2023 04.
Article in English | MEDLINE | ID: mdl-36991126

ABSTRACT

There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a highly lethal malignancy with increasing incidence1 and poor prognosis2. Although targeting tumour metabolism has been the focus of intense investigation for more than a decade, tumour metabolic plasticity and high risk of toxicity have limited this anticancer strategy3,4. Here we use genetic and pharmacological approaches in human and mouse in vitro and in vivo models to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine. We find that this process, which is mediated through ornithine aminotransferase (OAT), supports polyamine synthesis and is required for tumour growth. This directional OAT activity is usually largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginine-derived ornithine for polyamine synthesis5,6. This dependency associates with arginine depletion in the PDA tumour microenvironment and is driven by mutant KRAS. Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to alterations in the transcriptome and open chromatin landscape in PDA tumour cells. The distinct dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.


Subject(s)
Ornithine-Oxo-Acid Transaminase , Pancreatic Neoplasms , Polyamines , Animals , Humans , Mice , Arginine/deficiency , Arginine/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Ornithine/biosynthesis , Ornithine/metabolism , Ornithine-Oxo-Acid Transaminase/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Polyamines/metabolism , Tumor Microenvironment
8.
Cell ; 185(23): 4280-4297.e12, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36323316

ABSTRACT

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Subject(s)
Bifidobacterium longum , Infant , Child , Female , Humans , Child, Preschool , Bifidobacterium longum/metabolism , Bifidobacterium/metabolism , Weaning , Oligosaccharides/metabolism , Bangladesh , Milk, Human , Feces/microbiology
9.
Am J Clin Nutr ; 116(3): 653-662, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35575609

ABSTRACT

BACKGROUND: Arginine-derived metabolites are involved in oxidative and inflammatory processes related to endothelial functions and cardiovascular risks. OBJECTIVES: We prospectively examined the associations of arginine catabolism metabolites with the risks of atrial fibrillation (AF) or heart failure (HF), and evaluated the potential modifications of these associations through Mediterranean diet (MedDiet) interventions in a large, primary-prevention trial. METHODS: Two nested, matched, case-control studies were designed within the Prevención con Dieta Mediterránea (PREDIMED) trial. We selected 509 incident cases and 547 matched controls for the AF case-control study and 326 cases and 402 matched controls for the HF case-control study using incidence density sampling. Fasting blood samples were collected at baseline and arginine catabolism metabolites were measured using LC-tandem MS. Multivariable conditional logistic regression models were applied to test the associations between the metabolites and incident AF or HF. Interactions between metabolites and intervention groups (MedDiet groups compared with control group) were analyzed with the likelihood ratio test. RESULTS: Inverse association with incident AF was observed for arginine (OR per 1 SD, 0.83; 95% CI: 0.73-0.94), whereas a positive association was found for N1-acetylspermidine (OR for Q4 compared with Q1 1.58; 95% CI: 1.13-2.25). For HF, inverse associations were found for arginine (OR per 1 SD, 0.82; 95% CI: 0.69-0.97) and homoarginine (OR per 1 SD, 0.81; 95% CI: 0.68-0.96), and positive associations were found for the asymmetric dimethylarginine (ADMA) and symmetric dimethlyarginine (SDMA) ratio (OR per 1 SD, 1.19; 95% CI: 1.02-1.41), N1-acetylspermidine (OR per 1 SD, 1.34; 95% CI: 1.12-1.60), and diacetylspermine (OR per 1 SD, 1.20; 95% CI: 1.02-1.41). In the stratified analysis according to the dietary intervention, the lower HF risk associated with arginine was restricted to participants in the MedDiet groups (P-interaction = 0.044). CONCLUSIONS: Our results suggest that arginine catabolism metabolites could be involved in AF and HF. Interventions with the MedDiet may contribute to strengthen the inverse association between arginine and the risk of HF. This trial was registered at controlled-trials.com as ISRCTN35739639.


Subject(s)
Atrial Fibrillation , Cardiovascular Diseases , Diet, Mediterranean , Heart Failure , Arginine , Atrial Fibrillation/prevention & control , Cardiovascular Diseases/prevention & control , Case-Control Studies , Heart Failure/prevention & control , Humans , Mediterranea , Risk Factors
10.
JCI Insight ; 7(6)2022 03 22.
Article in English | MEDLINE | ID: mdl-35167498

ABSTRACT

Dyslipidemia and autophagy have been implicated in the pathogenesis of blinding neovascular age-related macular degeneration (NV-AMD). VLDL receptor (VLDLR), expressed in photoreceptors with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acids. Since fatty acid uptake is reduced in Vldlr-/- tissues, more remain in circulation, and the retina is fuel deficient, driving the formation in mice of neovascular lesions reminiscent of retinal angiomatous proliferation (RAP), a subtype of NV-AMD. Nutrient scarcity and energy failure are classically mitigated by increasing autophagy. We found that excess circulating lipids restrained retinal autophagy, which contributed to pathological angiogenesis in the Vldlr-/- RAP model. Triglyceride-derived fatty acid sensed by free fatty acid receptor 1 (FFAR1) restricted autophagy and oxidative metabolism in photoreceptors. FFAR1 suppressed transcription factor EB (TFEB), a master regulator of autophagy and lipid metabolism. Reduced TFEB, in turn, decreased sirtuin-3 expression and mitochondrial respiration. Metabolomic signatures of mouse RAP-like retinas were consistent with a role in promoting angiogenesis. This signature was also found in human NV-AMD vitreous. Restoring photoreceptor autophagy in Vldlr-/- retinas, either pharmacologically or by deleting Ffar1, enhanced metabolic efficiency and suppressed pathological angiogenesis. Dysregulated autophagy by circulating lipids might therefore contribute to the energy failure of photoreceptors driving neovascular eye diseases, and FFAR1 may be a target for intervention.


Subject(s)
Macular Degeneration , Retinal Neovascularization , Animals , Autophagy , Cell Proliferation , Fatty Acids , Macular Degeneration/pathology , Mice , Neovascularization, Pathologic , Receptors, G-Protein-Coupled , Retinal Neovascularization/pathology , Triglycerides
11.
EBioMedicine ; 75: 103799, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34979341

ABSTRACT

BACKGROUND: Metabolomics profiles were consistently associated with type 2 diabetes (T2D) risk, but evidence on long-term metabolite changes and T2D incidence is lacking. We examined the associations of 10-year plasma metabolite changes with subsequent T2D risk. METHODS: We conducted a nested T2D case-control study (n=244 cases, n=244 matched controls) within the Nurses' Health Study. Repeated metabolomics profiling (170 targeted metabolites) was conducted in participant blood specimens from 1989/1990 and 2000/2001, and T2D occurred between 2002 and 2008. We related 10-year metabolite changes (Δ-values) to subsequent T2D risk using conditional logistic models, adjusting for baseline metabolite levels and baseline levels and concurrent changes of BMI, diet quality, physical activity, and smoking status. FINDINGS: The 10-year changes of thirty-one metabolites were associated with subsequent T2D risk (false discovery rate-adjusted p-values [FDR]<0.05). The top three high T2D risk-associated 10-year changes were (odds ratio [OR] per standard deviation [SD], 95%CI): Δisoleucine (2.72, 1.97-3.79), Δleucine (2.53, 1.86-3.47), and Δvaline (1.93, 1.52-2.44); other high-risk-associated metabolite changes included alanine, tri-/diacylglycerol-fragments, short-chain acylcarnitines, phosphatidylethanolamines, some vitamins, and bile acids (ORs per SD between 1.31and 1.82). The top three low T2D risk-associated 10-year metabolite changes were (OR per SD, 95% CI): ΔN-acetylaspartic acid (0.54, 0.42-0.70), ΔC20:0 lysophosphatidylethanolamine (0.68, 0.56-0.82), and ΔC16:1 sphingomyelin (0.68, 0.56-0.83); 10-year changes of other sphingomyelins, plasmalogens, glutamine, and glycine were also associated with lower subsequent T2D risk (ORs per SD between 0.66 and 0.78). INTERPRETATION: Repeated metabolomics profiles reflecting the long-term deterioration of amino acid and lipid metabolism are associated with subsequent risk of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Nurses , Case-Control Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Humans , Metabolomics , Risk Factors
12.
Rev Esp Cardiol (Engl Ed) ; 75(8): 649-658, 2022 Aug.
Article in English, Spanish | MEDLINE | ID: mdl-34866031

ABSTRACT

INTRODUCTION AND OBJECTIVES: Fatty acid metabolic dysregulation in mitochondria is a common mechanism involved in the development of heart failure (HF) and atrial fibrillation (AF). We evaluated the association between plasma acylcarnitine levels and the incidence of HF or AF, and whether the mediterranean diet (MedDiet) may attenuate the association between acylcarnitines and HF or AF risk. METHODS: Two case-control studies nested within the Prevención con dieta mediterránea (PREDIMED) trial. High cardiovascular risk participants were recruited in Spain: 326 incident HF and 509 AF cases individually matched to 1 to 3 controls. Plasma acylcarnitines were measured with high-throughput liquid chromatography-tandem mass spectrometry. Conditional logistic regression models were fitted to estimate multivariable OR and 95%CI. Additive and multiplicative interactions were assessed by intervention group, obesity (body mass index ≥ 30 kg/m2), and type 2 diabetes. RESULTS: Elevated levels of medium- and long-chain acylcarnitines were associated with increased HF risk (adjusted ORperDE, 1.28; 95%CI, 1.09-1.51 and adjusted ORperDE, 1.21; 95%CI, 1.04-1.42, respectively). A significant association was observed for AF risk with long-chain acylcarnitines: 1.20 (1.06-1.36). Additive interaction of the association between long-chain acylcarnitines and AF by the MediDiet supplemented with extra virgin olive oil (P for additive interaction=.036) and by obesity (P=.022) was observed in an inverse and direct manner, respectively. CONCLUSIONS: Among individuals at high cardiovascular risk, elevated long-chain acylcarnitines were associated with a higher risk of incident HF and AF. An intervention with MedDiet+extra-virgin olive oil may reduce AF risk associated with long-chain acylcarnitines. This trial was registered at controlled-trials.com (Identifier: ISRCTN35739639).


Subject(s)
Atrial Fibrillation , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diet, Mediterranean , Heart Failure , Atrial Fibrillation/epidemiology , Cardiovascular Diseases/epidemiology , Carnitine/analogs & derivatives , Heart Failure/epidemiology , Humans , Mediterranea , Nuts , Obesity , Olive Oil , Risk Factors
13.
Am J Clin Nutr ; 114(5): 1646-1654, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34291275

ABSTRACT

BACKGROUND: The tryptophan-kynurenine pathway is linked to inflammation. We hypothesize that metabolites implicated in this pathway may be associated with the risk of heart failure (HF) or atrial fibrillation (AF) in a population at high risk of cardiovascular disease. OBJECTIVES: We aimed to prospectively analyze the associations of kynurenine-related metabolites with the risk of HF and AF and to analyze a potential effect modification by the randomized interventions of the PREDIMED (Prevención con Dieta Mediterránea) trial with Mediterranean diet (MedDiet). METHODS: Two case-control studies nested within the PREDIMED trial were designed. We selected 324 incident HF cases and 502 incident AF cases individually matched with ≤3 controls. Conditional logistic regression models were fitted. Interactions with the intervention were tested for each of the baseline plasma metabolites measured by LC-tandem MS. RESULTS: Higher baseline kynurenine:tryptophan ratio (OR for 1 SD: 1.20; 95% CI: 1.01, 1.43) and higher levels of kynurenic acid (OR: 1.19; 95% CI: 1.01, 1.40) were associated with HF. Quinolinic acid was associated with AF (OR: 1.15; 95% CI: 1.01, 1.32) and HF (OR: 1.25; 95% CI: 1.04, 1.49). The MedDiet intervention modified the positive associations of kynurenine (Pinteraction = 0.006), kynurenic acid (Pinteraction = 0.008), and quinolinic acid (Pinteraction = 0.033) with HF and the association between kynurenic acid and AF (Pinteraction = 0.02). CONCLUSIONS: We found that tryptophan-kynurenine pathway metabolites were prospectively associated with higher HF risk and to a lesser extent with AF risk. Moreover, an effect modification by MedDiet was observed for the association between plasma baseline kynurenine-related metabolites and the risk of HF, showing that the positive association of increased levels of these metabolites and HF was restricted to the control group.


Subject(s)
Atrial Fibrillation/etiology , Diet, Mediterranean , Heart Failure/etiology , Kynurenine/metabolism , Metabolomics , Tryptophan/metabolism , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Logistic Models , Male , Middle Aged , Prospective Studies , Risk Factors
14.
Am J Clin Nutr ; 114(1): 163-174, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33742198

ABSTRACT

BACKGROUND: Epidemiologic studies have reported a modest inverse association between dairy consumption and the risk of type 2 diabetes (T2D). Whether plasma metabolite profiles associated with dairy consumption reflect this relationship remains unknown. OBJECTIVES: We aimed to identify the plasma metabolites associated with total and specific dairy consumption, and to evaluate the association between the identified multi-metabolite profiles and T2D. METHODS: The discovery population included 1833 participants from the Prevención con Dieta Mediterránea (PREDIMED) trial. The confirmatory cohorts included 1522 PREDIMED participants at year 1 of the trial and 4932 participants from the Nurses' Health Studies (NHS), Nurses' Health Study II (NHSII), and Health Professionals Follow-Up Study US-based cohorts. Dairy consumption was assessed using validated FFQs. Plasma metabolites (n = 385) were profiled using LC-MS. We identified the dairy-related metabolite profiles using elastic net regularized regressions with a 10-fold cross-validation procedure. We evaluated the associations between the metabolite profiles and incident T2D in the discovery and the confirmatory cohorts. RESULTS: Total dairy intake was associated with 38 metabolites. C14:0 sphingomyelin (positive coefficient), C34:0 phosphatidylethanolamine (positive coefficient), and γ-butyrobetaine (negative coefficient) were associated in a directionally similar fashion with total and specific (milk, yogurt, cheese) dairy consumption. The Pearson correlation coefficients between self-reported total dairy intake and predicted total dairy intake based on the corresponding multi-metabolite profile were 0.37 (95% CI, 0.33-0.40) in the discovery cohort and 0.16 (95% CI, 0.13-0.19) in the US confirmatory cohort. After adjusting for T2D risk factors, a higher total dairy intake-related metabolite profile score was associated with a lower T2D risk [HR per 1 SD; discovery cohort: 0.76 (95% CI, 0.63-0.90); US confirmatory cohort: 0.88 (95% CI, 0.78-0.99)]. CONCLUSIONS: Total dairy intake was associated with 38 metabolites, including 3 consistently associated with dairy subtypes (C14:0 sphingomyelin, C34:0 phosphatidylethanolamine, γ-butyrobetaine). A score based on the 38 identified metabolites showed an inverse association with T2D risk in Spanish and US populations.


Subject(s)
Dairy Products , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Feeding Behavior , Milk , Aged , Animals , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors
15.
J Nutr ; 151(2): 303-311, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33382410

ABSTRACT

BACKGROUND: Walnut consumption is associated with lower risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). However, it is unknown whether plasma metabolites related to walnut consumption are also associated with lower risk of cardiometabolic diseases. OBJECTIVES: The study aimed to identify plasma metabolites associated with walnut consumption and evaluate the prospective associations between the identified profile and risk of T2D and CVD. METHODS: The discovery population included 1833 participants at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) study with available metabolomics data at baseline. The study population included 57% women (baseline mean BMI (in kg/m2): 29.9; mean age: 67 y). A total of 1522 participants also had available metabolomics data at year 1 and were used as the internal validation population. Plasma metabolomics analyses were performed using LC-MS. Cross-sectional associations between 385 known metabolites and walnut consumption were assessed using elastic net continuous regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson correlation coefficients were assessed between metabolite weighted models and self-reported walnut consumption in each pair of training-validation data sets within the discovery population. We further estimated the prospective associations between the identified metabolite profile and incident T2D and CVD using multivariable Cox regression models. RESULTS: A total of 19 metabolites were significantly associated with walnut consumption, including lipids, purines, acylcarnitines, and amino acids. Ten-CV Pearson correlation coefficients between self-reported walnut consumption and the plasma metabolite profile were 0.16 (95% CI: 0.11, 0.20) in the discovery population and 0.15 (95% CI: 0.10, 0.20) in the validation population. The metabolite profile was inversely associated with T2D incidence (HR per 1 SD: 0.83; 95% CI: 0.71, 0.97; P = 0.02). For CVD incidence, the HR per 1-SD was 0.71 (95% CI: 0.60, 0.85; P < 0.001). CONCLUSIONS: A metabolite profile including 19 metabolites was associated with walnut consumption and with a lower risk of incident T2D and CVD in a Mediterranean population at high cardiovascular risk.


Subject(s)
Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/prevention & control , Juglans , Metabolomics , Nuts , Amino Acids/blood , Biomarkers/blood , Cardiovascular Diseases/blood , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/chemistry , Diabetes Mellitus, Type 2/blood , Humans , Lipids/blood , Purines/blood , Risk Factors
16.
Mol Nutr Food Res ; 64(12): e2000178, 2020 06.
Article in English | MEDLINE | ID: mdl-32378786

ABSTRACT

SCOPE: The plasma metabolomics profiles of protein intake have been rarely investigated. The aim is to identify the distinct plasma metabolomics profiles associated with overall intakes of protein as well as with intakes from animal and plant protein sources. METHODS AND RESULTS: A cross-sectional analysis using data from 1833 participants at high risk of cardiovascular disease is conducted. Associations between 385 identified metabolites and the intake of total, animal protein (AP), and plant protein (PP), and plant-to-animal ratio (PR) are assessed using elastic net continuous regression analyses. A double 10-cross-validation (CV) procedure is used and Pearson correlations coefficients between multi-metabolite weighted models and reported protein intake in each pair of training-validation datasets are calculated. A wide set of metabolites is consistently associated with each protein source evaluated. These metabolites mainly consisted of amino acids and their derivatives, acylcarnitines, different organic acids, and lipid species. Few metabolites overlapped among protein sources (i.e., C14:0 SM, C20:4 carnitine, GABA, and allantoin) but none of them toward the same direction. Regarding AP and PP approaches, C20:4 carnitine and dimethylglycine are positively associated with PP but negatively associated with AP. However, allantoin, C14:0 SM, C38:7 PE plasmalogen, GABA, metronidazole, and trigonelline (N-methylnicotinate) behave contrarily. Ten-CV Pearson correlation coefficients between self-reported protein intake and plasma metabolomics profiles range from 0.21 for PR to 0.32 for total protein. CONCLUSIONS: Different sets of metabolites are associated with total, animal, and plant protein intake. Further studies are needed to assess the contribution of these metabolites in protein biomarkers' discovery and prediction of cardiometabolic alterations.


Subject(s)
Blood/metabolism , Dietary Proteins/pharmacology , Metabolomics/methods , Aged , Animals , Cardiovascular Diseases/blood , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Dietary Proteins/metabolism , Female , Humans , Male , Middle Aged , Plant Proteins, Dietary/metabolism , Plant Proteins, Dietary/pharmacology
17.
J Nutr ; 150(5): 1272-1283, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32055836

ABSTRACT

BACKGROUND: The role of dairy in health can be elucidated by investigating circulating metabolites associated with intake. OBJECTIVES: We sought to identify metabolites associated with quantity and type of dairy intake in the Framingham Heart Study Offspring and Third Generation (Gen3) cohorts. METHODS: Dairy intake (total dairy, milk, cheese, yogurt, and cream/butter) was analyzed in relation to targeted (Offspring, n = 2205, 55.1 ± 9.8 y, 52% female, 217 signals; Gen3, n = 866, 40.5 ± 8.8 y, 54.9% female, 79 signals) and nontargeted metabolites (Gen3, ∼7031 signals) in a 2-step analysis including orthogonal projections to latent structures with discriminant analysis (OPLS-DA) in discovery subsets to identify metabolites distinguishing between high and low intake; and linear regression in confirmation subsets to assess putative associations, subsequently tested in the total samples. Previously reported associations were also investigated. RESULTS: OPLS-DA in the Offspring targeted discovery subset resulted in a variable importance in projection (VIP) >1 of 65, 60, 58, 66, and 60 metabolites for total dairy, milk, cream/butter, cheese, and yogurt, respectively, of which 5, 3, 1, 6, and 4 metabolites, respectively, remained after confirmation. In the Gen3 targeted discovery subset, OPLS-DA resulted in a VIP >1 of 17, 15, 13, 7, and 6 metabolites for total dairy, milk, cream/butter, cheese, and yogurt, respectively. In the Gen3 nontargeted discovery subset, OPLS-DA resulted in a VIP >2 of 203, 503, 78, 186, and 206 metabolites, respectively. Combining targeted and nontargeted results in Gen3, significant associations of 7 (6 unannotated), 2, 12 (11 unannotated), 0, and 61 (all unannotated) metabolites, respectively, remained. Candidate identities of unannotated signals included fatty acids and food flavorings. Results supported relations previously reported for C14:0 sphingomyelin, and marginal associations for deoxycholates. CONCLUSIONS: Dairy in 2 American adult cohorts associated with numerous circulating metabolites. Reports about diet-metabolite relations and confirmation of previous findings might be limited by specificity of dietary intake and breadth of measured metabolites.


Subject(s)
Dairy Products , Diet , Metabolomics , Amino Acids/blood , Animals , Biogenic Amines/blood , Butter , Cardiovascular Diseases/blood , Cheese , Cohort Studies , Fatty Acids/blood , Female , Humans , Longitudinal Studies , Male , Middle Aged , Milk , Yogurt
18.
Am J Clin Nutr ; 111(4): 835-844, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32060497

ABSTRACT

BACKGROUND: Glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle metabolites have been associated with type 2 diabetes (T2D). However, the associations of these metabolites with T2D incidence and the potential effect of dietary interventions remain unclear. OBJECTIVES: We aimed to evaluate the association of baseline and 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites with insulin resistance and T2D incidence, and the potential modifying effect of Mediterranean diet (MedDiet) interventions. METHODS: We included 251 incident T2D cases and 638 noncases in a nested case-cohort study within the PREDIMED Study during median follow-up of 3.8 y. Participants were allocated to MedDiet + extra-virgin olive oil, MedDiet + nuts, or control diet. Plasma metabolites were measured using a targeted approach by LC-tandem MS. We tested the associations of baseline and 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites with subsequent T2D risk using weighted Cox regression models and adjusting for potential confounders. We designed a weighted score combining all these metabolites and applying the leave-one-out cross-validation approach. RESULTS: Baseline circulating concentrations of hexose monophosphate, pyruvate, lactate, alanine, glycerol-3 phosphate, and isocitrate were significantly associated with higher T2D risk (17-44% higher risk for each 1-SD increment). The weighted score including all metabolites was associated with a 30% (95% CI: 1.12, 1.51) higher relative risk of T2D for each 1-SD increment. Baseline lactate and alanine were associated with baseline and 1-y changes of homeostasis model assessment of insulin resistance. One-year increases in most metabolites and in the weighted score were associated with higher relative risk of T2D after 1 y of follow-up. Lower risks were observed in the MedDiet groups than in the control group although no significant interactions were found after adjusting for multiple comparisons. CONCLUSIONS: We identified a panel of glycolysis/gluconeogenesis-related metabolites that was significantly associated with T2D risk in a Mediterranean population at high cardiovascular disease risk. A MedDiet could counteract the detrimental effects of these metabolites.This trial was registered at controlled-trials.com as ISRCTN35739639.


Subject(s)
Citric Acid Cycle , Diabetes Mellitus, Type 2/diet therapy , Diet, Mediterranean , Gluconeogenesis , Glycolysis , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Female , Humans , Male , Middle Aged
19.
Cardiovasc Diabetol ; 18(1): 151, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31722714

ABSTRACT

BACKGROUND: The pandemic of cardiovascular disease (CVD) and type 2 diabetes (T2D) requires the identification of new predictor biomarkers. Biomarkers potentially modifiable with lifestyle changes deserve a special interest. Our aims were to analyze: (a) The associations of lysine, 2-aminoadipic acid (2-AAA) or pipecolic acid with the risk of T2D or CVD in the PREDIMED trial; (b) the effect of the dietary intervention on 1-year changes in these metabolites, and (c) whether the Mediterranean diet (MedDiet) interventions can modify the effects of these metabolites on CVD or T2D risk. METHODS: Two unstratified case-cohort studies nested within the PREDIMED trial were used. For CVD analyses, we selected 696 non-cases and 221 incident CVD cases; for T2D, we included 610 non-cases and 243 type 2 diabetes incident cases. Metabolites were quantified using liquid chromatography-tandem mass spectrometry, at baseline and after 1-year of intervention. RESULTS: In weighted Cox regression models, we found that baseline lysine (HR+1 SD increase = 1.26; 95% CI 1.06-1.51) and 2-AAA (HR+1 SD increase = 1.28; 95% CI 1.05-1.55) were both associated with a higher risk of T2D, but not with CVD. A significant interaction (p = 0.032) between baseline lysine and T2D on the risk of CVD was observed: subjects with prevalent T2D and high levels of lysine exhibited the highest risk of CVD. The intervention with MedDiet did not have a significant effect on 1-year changes of the metabolites. CONCLUSIONS: Our results provide an independent prospective replication of the association of 2-AAA with future risk of T2D. We show an association of lysine with subsequent CVD risk, which is apparently diabetes-dependent. No evidence of effects of MedDiet intervention on lysine, 2-AAA or pipecolic acid changes was found. Trial registration ISRCTN35739639; registration date: 05/10/2005; recruitment start date 01/10/2003.


Subject(s)
2-Aminoadipic Acid/blood , Cardiovascular Diseases/blood , Diabetes Mellitus, Type 2/blood , Lysine/blood , Pipecolic Acids/blood , Aged , Aged, 80 and over , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Diet, Mediterranean , Female , Humans , Incidence , Male , Middle Aged , Primary Prevention , Prospective Studies , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Risk Reduction Behavior , Time Factors , Treatment Outcome
20.
Cancer Epidemiol Biomarkers Prev ; 28(12): 2062-2069, 2019 12.
Article in English | MEDLINE | ID: mdl-31533940

ABSTRACT

BACKGROUND: Pancreatic cancer is associated with development of cachexia, a wasting syndrome thought to limit survival. Few studies have longitudinally quantified peripheral tissues or identified biomarkers predictive of future tissue wasting. METHODS: Adipose and muscle tissue were measured by computed tomography (CT) at diagnosis and 50 to 120 days later in 164 patients with advanced pancreatic cancer. Tissue changes and survival were evaluated by Cox proportional hazards regression. Baseline levels of circulating markers were examined in relation to future tissue wasting. RESULTS: Compared with patients in the bottom quartile of muscle change per 30 days (average gain of 0.8 ± 2.0 cm2), those in the top quartile (average loss of 12.9 ± 4.9 cm2) had a hazard ratio (HR) for death of 2.01 [95% confidence interval (CI), 1.12-3.62]. Patients in the top quartile of muscle attenuation change (average decrease of 4.9 ± 2.4 Hounsfield units) had an HR of 2.19 (95% CI, 1.18-4.04) compared with those in the bottom quartile (average increase of 2.4 ± 1.6 Hounsfield units). Changes in adipose tissue were not associated with survival. Higher plasma branched chain amino acids (BCAA; P = 0.004) and lower monocyte chemoattractant protein-1 (MCP-1; P = 0.005) at diagnosis were associated with greater future muscle loss. CONCLUSIONS: In patients with advanced pancreatic cancer, muscle loss and decrease in muscle density in 2 to 4 months after diagnosis were associated with reduced survival. BCAAs and MCP-1 levels at diagnosis were associated with subsequent muscle loss. IMPACT: BCAAs and MCP-1 levels at diagnosis could identify a high-risk group for future tissue wasting.


Subject(s)
Adipose Tissue/physiopathology , Body Composition , Muscle, Skeletal/physiopathology , Pancreatic Neoplasms/mortality , Tomography, X-Ray Computed/methods , Adipose Tissue/diagnostic imaging , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Prognosis , Retrospective Studies , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...