Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stapp Car Crash J ; 55: 141-59, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22869308

ABSTRACT

This study investigates the performance of a 3-point restraint system incorporating an inflatable shoulder belt with a nominal 2.5-kN load limiter and a non-inflatable lap belt with a pretensioner (the "Airbelt"). Frontal impacts with PMHS in a rear seat environment are presented and the Airbelt system is contrasted with an earlier 3-point system with inflatable lap and shoulder belts but no load-limiter or pretensioners, which was evaluated with human volunteers in the 1970s but not fully reported in the open literature (the "Inflataband"). Key differences between the systems include downward pelvic motion and torso recline with the Inflataband, while the pelvis moved almost horizontally and the torso pitched forward with the Airbelt. One result of these kinematic differences was an overall more biomechanically favorable restraint loading but greater maximum forward head excursion with the Airbelt. The Airbelt is shown to generate generally lower head, neck, and thoracic injury metrics and PMHS trauma than other, non-inflatable rear-seat restraint concepts (viz., a standard 3-point belt and a pre-tensioned shoulder belt with a progressive load limiter). Further study is needed to evaluate the Airbelt system for different size occupants (e.g., children), non-frontal impact vectors, and for out-of-position occupants and to allow the results with this particular system to be generalized to a broader range of Airbelt designs.


Subject(s)
Accidents, Traffic , Seat Belts , Wounds and Injuries/prevention & control , Acceleration , Adult , Aged , Biomechanical Phenomena , Equipment Design , Humans , Male , Video Recording , Young Adult
2.
Ann Adv Automot Med ; 54: 111-26, 2010.
Article in English | MEDLINE | ID: mdl-21050596

ABSTRACT

Frontal-impact airbag systems have the potential to provide a benefit to rear seat occupants by distributing restraining forces over the body in a manner not possible using belts alone. This study sought to investigate the effects of incorporating a belt-integrated airbag ("airbelt") into a rear seat occupant restraint system. Frontal impact sled tests were performed with a Hybrid III 50th percentile male anthropomorphic test device (ATD) seated in the right-rear passenger position of a 2004 mid-sized sedan buck. Tests were performed at 48 km/h (20 g, 100 ms acceleration pulse) and 29 km/h (11 g, 100 ms). The restraints consisted of a 3-point belt system with a cylindrical airbag integrated into the upper portion of the shoulder belt. The airbag was tapered in shape, with a maximum diameter of 16 cm (at the shoulder) that decreased to 4 cm at the mid-chest. A 2.5 kN force-limiter was integrated into the shoulder-belt retractor, and a 2.3 kN pretensioner was present in the out-board anchor of the lap belt. Six ATD tests (three 48 km/h and three 29 km/h) were performed with the airbelt system. These were compared to previous frontal-impact, rear seat ATD tests with a standard (not-force-limited, not-pretensioned) 3-point belt system and a progressive force-limiting (peak 4.4 kN), pretensioning (FL+PT) 3-point belt system. In the 48 km/h tests, the airbelt resulted in significantly less (p<0.05, two-tailed Student's t-test) posterior displacement of the sternum towards the spine (chest deflection) than both the standard and FL+PT belt systems (airbelt: average 13±1.1 mm standard deviation; standard belt: 33±2.3 mm; FL+PT belt: 23±2.6 mm). This was consistent with a significant reduction in the peak upper shoulder belt force (airbelt: 2.7±0.1 kN; standard belt: 8.7±0.3 kN; FL+PT belt: 4.4±0.1 kN), and was accompanied by a small increase in forward motion of the head (airbelt: 54±0.4 cm; standard belt: 45±1.3 cm; FL+PT belt: 47±1.1 cm) The airbelt system also significantly reduced the flexion moment in the lower neck (airbelt: 169±3.3 Nm; standard belt: 655±26 Nm; FL+PT belt: 308±19 Nm). Similar results were observed in the 29 km/h tests. These results suggest that this airbelt system may provide some benefit for adult rear seat occupants in frontal collisions, even in relatively low-speed impacts. Further study is needed to evaluate this type of restraint system for different size occupants (e.g., children), for out-of-position occupants, and with other occupant models (e.g., cadavers).


Subject(s)
Accidents, Traffic , Seat Belts , Acceleration , Air Bags , Biomechanical Phenomena , Equipment Design , Humans , Male , Thorax
SELECTION OF CITATIONS
SEARCH DETAIL
...