Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(2): e10913, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322005

ABSTRACT

All animals and plants respond to changes in the environment during their life cycle. This flexibility is known as phenotypic plasticity and allows organisms to cope with variable environments. A common source of environmental variation is predation risk, which describes the likelihood of being attacked and killed by a predator. Some species can respond to the level of predation risk by producing morphological defences against predation. A classic example is the production of so-called 'neckteeth' in the water flea, Daphnia pulex, which defend against predation from Chaoborus midge larvae. Previous studies of this defence have focussed on changes in pedestal size and the number of spikes along a gradient of predation risk. Although these studies have provided a model for continuous phenotypic plasticity, they do not capture the whole-organism shape response to predation risk. In contrast, studies in fish and amphibians focus on shape as a complex, multi-faceted trait made up of different variables. In this study, we analyse how multiple aspects of shape change in D. pulex along a gradient of predation risk from Chaoborus flavicans. These changes are dominated by the neckteeth defence, but there are also changes in the size and shape of the head and the body. We detected change in specific modules of the body plan and a level of integration among modules. These results are indicative of a complex, multi-faceted response to predation and provide insight into how predation risk drives variation in shape and size at the level of the whole organism.

2.
Evol Appl ; 17(1): e13620, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38283608

ABSTRACT

Human activities have facilitated the invasion of freshwater ecosystems by various organisms. Especially, invasive bivalves such as the quagga mussels, Dreissena bugensis, have the potential to alter ecosystem function as they heavily affect the food web. Quagga mussels occur in high abundance, have a high filtration rate, quickly spread within and between waterbodies via pelagic larvae, and colonize various substrates. They have invaded various waterbodies across the Northern Hemisphere. In Central Europe, they have invaded multiple large and deep perialpine lakes with first recordings in Lake Geneva in 2015 and 2016 in Lake Constance. In the deep perialpine lakes, quagga mussels quickly colonized the littoral zone but are also abundant deeper (>80 m), where they are often thinner and brighter shelled. We analysed 675 quagga mussels using ddRAD sequencing to gain in-depth insights into the genetic population structure of quagga mussels across Central European lakes and across various sites and depth habitats in Lake Constance. We revealed substantial genetic differentiation amongst quagga mussel populations from three unconnected lakes, and all populations showed high genetic diversity and effective population size. In Lake Constance, we detected no genetic differentiation amongst quagga mussels sampled across different sites and depth habitats. We also did not identify any convincing candidate loci evidential for adaptation along a depth gradient and a transplant experiment showed no indications of local adaptation to living in the deep based on investigating growth and survival. Hence, the shallow-water and the deep-water morphotypes seem to be a result of phenotypic plasticity rather than local adaptation to depth. In conclusion, our ddRAD approach revealed insight into the establishment of genetically distinct quagga mussel populations in three perialpine lakes and suggests that phenotypic plasticity and life history traits (broadcast spawner with high fecundity and dispersing pelagic larvae) facilitate the fast spread and colonization of various depth habitats by the quagga mussel.

3.
Microb Ecol ; 85(4): 1578-1589, 2023 May.
Article in English | MEDLINE | ID: mdl-35486140

ABSTRACT

Host genotype may shape host-associated bacterial communities (commonly referred to as microbiomes). We sought to determine (a) whether bacterial communities vary among host genotypes in the water flea Daphnia galeata and (b) if this difference is driven by the genetic distance between host genotypes, by using D. galeata genotypes hatched from sediments of different time periods. We used 16S amplicon sequencing to profile the gut and body bacterial communities of eight D. galeata genotypes hatched from resting eggs; these were isolated from two distinct sediment layers (dating to 1989 and 2009) of a single sediment core of the lake Greifensee, and maintained in a common garden in laboratory cultures for 5 years. In general, bacterial community composition varied in both the Daphnia guts and bodies; but not between genotypes from different sediment layers. Specifically, genetic distances between host genotypes did not correlate with beta diversity of bacterial communities in Daphnia guts and bodies. Our results indicate that Daphnia bacterial community structure is to some extent determined by a host genetic component, but that genetic distances between hosts do not correlate with diverging bacterial communities.


Subject(s)
Bacteria , Daphnia , Animals , Daphnia/genetics , Daphnia/microbiology , Bacteria/genetics , Genotype , Lakes
4.
Genome Biol Evol ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34865004

ABSTRACT

Hybridization and introgression are recognized as an important source of variation that influence adaptive processes; both phenomena are frequent in the genus Daphnia, a keystone zooplankton taxon in freshwater ecosystems that comprises several species complexes. To investigate genome-wide consequences of introgression between species, we provide here the first high-quality genome assembly for a member of the Daphnia longispina species complex, Daphnia galeata. We further resequenced 49 whole genomes of three species of the complex and their interspecific hybrids both from genotypes sampled in the water column and from single resting eggs extracted from sediment cores. Populations from habitats with diverse ecological conditions offered an opportunity to study the dynamics of hybridization linked to ecological changes and revealed a high prevalence of hybrids. Using phylogenetic and population genomic approaches, we provide first insights into the intra- and interspecific genome-wide variability in this species complex and identify regions of high divergence. Finally, we assess the length of ancestry tracts in hybrids to characterize introgression patterns across the genome. Our analyses uncover a complex history of hybridization and introgression reflecting multiple generations of hybridization and backcrossing in the Daphnia longispina species complex. Overall, this study and the new resources presented here pave the way for a better understanding of ancient and contemporary gene flow in the species complex and facilitate future studies on resting egg banks accumulating in lake sediment.


Subject(s)
Daphnia , Microsatellite Repeats , Animals , Daphnia/genetics , Ecosystem , Genetic Variation , Hybridization, Genetic , Phylogeny
5.
Water Res ; 203: 117524, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34418642

ABSTRACT

The Dual Scripps Plankton Camera (DSPC) is a new approach for automated in-situ monitoring of phyto- and zooplankton communities based on a dual magnification dark-field imaging microscope. Here, we present the DSPC and its associated image processing while evaluating its capabilities in i) detecting and characterizing plankton species of different size and taxonomic categories and ii) measuring their abundance in both laboratory and field applications. In the laboratory, body size and abundance estimates by the DSPC significantly and robustly scaled with measurements derived by microscopy. In the field, a DSPC installed permanently at 3 m depth in Lake Greifensee (Switzerland) delivered images of plankton individuals, colonies, and heterospecific aggregates at hourly timescales without disrupting natural arrangements of interacting organisms, their microenvironment or their behavior. The DSPC was able to track the dynamics of taxa, mostly at the genus level, in the size range between ∼10 µm to ∼ 1 cm, covering many components of the planktonic food web (including parasites and potentially toxic cyanobacteria). Comparing data from the field-deployed DSPC to traditional sampling and microscopy revealed a general overall agreement in estimates of plankton diversity and abundances. The most significant disagreements between traditional methods and the DSPC resided in the measurements of zooplankton community properties. Our data suggest that the DSPC is better equipped to study the dynamics and demography of heterogeneously distributed organisms such as zooplankton, because high temporal resolution and continuous sampling offer more information and less variability in taxa detection and quantification than traditional sampling. Time series collected by the DSPC depicted ecological succession patterns, algal bloom dynamics and diel fluctuations with a temporal frequency and morphological resolution that was never observed by traditional methods. Access to high frequency, reproducible and real-time data of a large spectrum of the planktonic ecosystem expands our understanding of both applied and fundamental plankton ecology. We conclude the DSPC is robust for both research and water quality monitoring and suitable for stable long-term deployments.


Subject(s)
Lakes , Plankton , Animals , Ecosystem , Humans , Phytoplankton , Zooplankton
6.
Mol Phylogenet Evol ; 151: 106891, 2020 10.
Article in English | MEDLINE | ID: mdl-32562822

ABSTRACT

Caullerya mesnili is a common and virulent parasite of the water flea, Daphnia. It was classified within the Haplosporidia (Rhizaria) for over a century. However, a recent molecular phylogeny based on the 18S rRNA gene suggested it belonged to the Ichthyosporea, a class of protists closely related to animals within the Opisthokonta clade. The exact phylogenetic position of C. mesnili remained uncertain because it appeared in the 18S rRNA tree with a very long branch and separated from all other taxa, suggesting that its position could be artifactual. A better understanding of its phylogenetic position has been constrained by a lack of molecular markers and the difficulty of obtaining a suitable quantity and quality of DNA from in vitro cultures, as this intracellular parasite cannot be cultured without its host. We isolated and collected spores of C. mesnili and sequenced genomic libraries. Phylogenetic analyses of a newly generated multi-protein data set (22 proteins, 4998 amino acids) and of sequences from the 18S rRNA gene both placed C. mesnili within the Ichthyophonida sub-clade of Ichthyosporea, as sister-taxon to Abeoforma whisleri and Pirum gemmata. Our study highlights the utility of metagenomic approaches for obtaining genomic information from intracellular parasites and for more accurate phylogenetic placement in evolutionary studies.


Subject(s)
Daphnia/parasitology , Mesomycetozoea/classification , Mesomycetozoea/genetics , Open Reading Frames/genetics , Parasites/classification , Parasites/genetics , Phylogeny , Animals , Base Sequence , Biological Evolution , Likelihood Functions , RNA, Ribosomal, 18S/genetics
7.
Proc Biol Sci ; 286(1913): 20191857, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31615363

ABSTRACT

A major challenge in ecology is to understand determinants of ecosystem functioning and stability in the face of disturbance. Some important species can strongly shape community structure and ecosystem functioning, but their impacts and interactions on ecosystem-level responses to disturbance are less well known. Shallow ponds provide a model system in which to study the effects of such species because some taxa mitigate transitions between alternative ecosystem states caused by eutrophication. We performed pond experiments to test how two foundation species (a macrophyte and a mussel) affected the biomass of planktonic primary producers and its stability in response to nutrient additions. Individually, each species reduced phytoplankton biomass and tended to increase rates of recovery from disturbance, but together the species reversed these effects, particularly with larger nutrient additions. This reversal was mediated by high cyanobacterial dominance of the community and a resulting loss of trait evenness. Effects of the foundation species on primary producer biomass were associated with effects on other ecosystem properties, including turbidity and dissolved oxygen. Our work highlights the important role of foundation species and their interactive effects in determining responses of ecosystem functioning to disturbance.


Subject(s)
Ecosystem , Animals , Biomass , Cyanobacteria , Eutrophication , Phytoplankton , Ponds
8.
Sci Total Environ ; 694: 133470, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31398648

ABSTRACT

The complexity of seasonally and spatially variable environments, coupled with complex biological interactions, makes it difficult to pinpoint biological responses to specific environmental stressors, including chemical pollution. To disentangle causative factors and reveal biomarker responses, we applied biomarker-based multivariate approaches to 15 native populations of Mediterranean mussel Mytilus galloprovincialis in spring and autumn. In addition, we used a subset of these populations in transplant experiments between clean and polluted environments in nature and in lab mesocosms. The extent of biomarker responses in native populations is affected by season, and significantly lower variability across seasons was observed among mussels from clean than from polluted sites. Results of paired block designed transplant experiment demonstrated both regional and pollution effect, with mussels uniformly exhibiting higher responses on more impacted sites in each of the Adriatic regions. Biomarker status of mussels varied among Adriatic regions in dependence on the set of environmental variables, and between clean and polluted sites in dependence on measured concentrations of metals in mussels' tissue. Results of the mesocosm experiment revealed distinctive biomarker responses of two populations of different origin when exposed to common conditions. Multivariate description of biomarker activity and application of specific experiments allowed us to link environmental condition, exposure to pollution and seasonality to mussels' biomarker responses.


Subject(s)
Environmental Monitoring , Mytilus/physiology , Animals , Biomarkers/metabolism , Metallothionein/metabolism , Seasons , Water Pollutants, Chemical/analysis
9.
BMC Genomics ; 19(1): 932, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30547741

ABSTRACT

BACKGROUND: Regulatory circuits of infection in the emerging experimental model system, water flea Daphnia and their microparasites, remain largely unknown. Here we provide the first molecular insights into the response of Daphnia galeata to its highly virulent and common parasite Caullerya mesnili, an ichthyosporean that infects the gut epithelium. We generated a transcriptomic dataset using RNAseq from parasite-exposed (vs. control) Daphnia, at two time points (4 and 48 h) after parasite exposure. RESULTS: We found a down-regulation of metabolism and immunity-related genes, at 48 h (but not 4 h) after parasite exposure. These genes are involved in lipid metabolism and fatty acid biosynthesis, as well as microbe recognition (e.g. c-type lectins) and pathogen attack (e.g. gut chitin). CONCLUSIONS: General metabolic suppression implies host energy shift from reproduction to survival, which is in agreement with the known drastic reduction in Daphnia fecundity after Caullerya infection. The down-regulation of gut chitin indicates a possible interaction between the peritrophic matrix and the evading host immune system. Our study provides the first description of host transcriptional responses in this very promising host-parasite experimental system.


Subject(s)
Daphnia/genetics , Immune System/metabolism , Intestines/parasitology , Lipid Metabolism/genetics , Mesomycetozoea/physiology , Animals , Daphnia/metabolism , Down-Regulation , Fatty Acid Synthases/genetics , Host-Parasite Interactions , Immune System/parasitology , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, RNA , Transcriptome
10.
Genome Biol Evol ; 10(2): 489-506, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29360978

ABSTRACT

Squamates include all lizards and snakes, and display some of the most diverse and extreme morphological adaptations among vertebrates. However, compared with birds and mammals, relatively few resources exist for comparative genomic analyses of squamates, hampering efforts to understand the molecular bases of phenotypic diversification in such a speciose clade. In particular, the ∼400 species of anole lizard represent an extensive squamate radiation. Here, we sequence and assemble the draft genomes of three anole species-Anolis frenatus, Anolis auratus, and Anolis apletophallus-for comparison with the available reference genome of Anolis carolinensis. Comparative analyses reveal a rapid background rate of molecular evolution consistent with a model of punctuated equilibrium, and strong purifying selection on functional genomic elements in anoles. We find evidence for accelerated evolution in genes involved in behavior, sensory perception, and reproduction, as well as in genes regulating limb bud development and hindlimb specification. Morphometric analyses of anole fore and hindlimbs corroborated these findings. We detect signatures of positive selection across several genes related to the development and regulation of the forebrain, hormones, and the iguanian lizard dewlap, suggesting molecular changes underlying behavioral adaptations known to reinforce species boundaries were a key component in the diversification of anole lizards.


Subject(s)
Evolution, Molecular , Lizards/genetics , Animals , Biological Evolution , DNA/genetics , Genetic Variation , Genomics , Lizards/anatomy & histology , Lizards/physiology , Molecular Sequence Annotation , Phylogeny , Selection, Genetic
11.
Mol Ecol ; 26(22): 6189-6205, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28786544

ABSTRACT

How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping-by-sequencing data from 1,360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with colour polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species' history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two colour variants and is associated with dorsal pattern polymorphism. Our results suggest that large-scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection.


Subject(s)
Biological Evolution , Genetic Variation , Insecta/genetics , Selection, Genetic , Adaptation, Biological/genetics , Animals , California , Chromosome Mapping , Cluster Analysis , Color , Ecosystem , Genetic Association Studies , Genetics, Population , Genotype , Phenotype , Pigmentation
12.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28835554

ABSTRACT

Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the micro-evolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex.


Subject(s)
Daphnia/genetics , Predatory Behavior , Animals , Ecosystem , Fishes , Food Chain , Phenotype
13.
Nat Ecol Evol ; 1(4): 82, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-28812654

ABSTRACT

Speciation can involve a transition from a few genetic loci that are resistant to gene flow to genome-wide differentiation. However, only limited data exist concerning this transition and the factors promoting it. Here, we study phases of speciation using data from >100 populations of 11 species of Timema stick insects. Consistent with early phases of genic speciation, adaptive colour-pattern loci reside in localized genetic regions of accentuated differentiation between populations experiencing gene flow. Transitions to genome-wide differentiation are also observed with gene flow, in association with differentiation in polygenic chemical traits affecting mate choice. Thus, intermediate phases of speciation are associated with genome-wide differentiation and mate choice, but not growth of a few genomic islands. We also find a gap in genomic differentiation between sympatric taxa that still exchange genes and those that do not, highlighting the association between differentiation and complete reproductive isolation. Our results suggest that substantial progress towards speciation may involve the alignment of multi-faceted aspects of differentiation.

14.
Mol Ecol ; 24(9): 2241-52, 2015 May.
Article in English | MEDLINE | ID: mdl-25611725

ABSTRACT

Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , DNA Transposable Elements , Genetic Variation , Introduced Species , Chromosome Mapping , Genetic Association Studies , Genetics, Population , Quantitative Trait Loci
15.
Oecologia ; 176(3): 625-35, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25284611

ABSTRACT

Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator).


Subject(s)
Daphnia/physiology , Ecdysone/metabolism , Gene Expression Regulation , Juvenile Hormones/metabolism , Phenotype , Animals , Daphnia/anatomy & histology , Daphnia/genetics , Daphnia/growth & development , Endocrine System/metabolism , Food Chain , Real-Time Polymerase Chain Reaction
16.
Ecol Evol ; 3(15): 5119-26, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24455141

ABSTRACT

Defenses against predators and parasites offer excellent illustrations of adaptive phenotypic plasticity. Despite vast knowledge about such induced defenses, they have been studied largely in isolation, which is surprising, given that predation and parasitism are ubiquitous and act simultaneously in the wild. This raises the possibility that victims must trade-off responses to predation versus parasitism. Here, we propose that arthropod responses to predators and parasites will commonly be based on the endocrine regulation of chitin synthesis and degradation. The proposal is compelling because many inducible defenses are centered on temporal or spatial modifications of chitin-rich structures. Moreover, we show how the chitin synthesis pathway ends in a split to carapace or gut chitin, and how this form of molecular regulation can be incorporated into theory on life-history trade-offs, specifically the Y-model. Our hypothesis thus spans several biological scales to address advice from Stearns that "Endocrine mechanisms may prove to be only the tip of an iceberg of physiological mechanisms that modulate the expression of genetic covariance".

17.
J Anim Ecol ; 79(5): 1069-76, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20522144

ABSTRACT

1. Two major theories underpin our understanding of how predation risk shapes life history. The first is centred around predator induced changes in activity that subsequently reduce food intake and thus growth. The second is centred around size selective, predator induced changes in development. 2. Here, we challenge these theories using experiments and probabilistic models of maturation reaction norms to investigate predator induced life history in the water flea Daphnia pulex facing two different predators. 3. We combine this reaction norm investigation with an assessment of growth rate, development rate, moult number and moult duration to uncover the mechanisms controlling predator induced life history plasticity when D. pulex face either large or small size selective predators. 4. The probabilistic reaction norms reveal predator specific norms of reaction in size and age along a food gradient. Fish cues reduce age and size, with a bias in age, and do so by reducing moult number and duration. Midge cues increase age and size, with a bias in size, and do so by fine scale modulation of early growth rates. 5. These data contribute towards developing a unified view of how predation risk from multiple predators shapes life history evolution.


Subject(s)
Body Size/physiology , Ceratopogonidae/physiology , Daphnia/physiology , Fishes/physiology , Predatory Behavior/physiology , Aging/physiology , Animals
18.
Comp Biochem Physiol C Toxicol Pharmacol ; 151(3): 298-302, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20005975

ABSTRACT

Opioid peptides have been implicated in regulation of feeding in invertebrates. Studies have suggested that receptors for opioids are present in cockroaches and that these receptors play roles in affecting both behaviour and feeding. We examined the effect of micro, delta, and kappa opioid receptor agonists and antagonists on feeding, mass changes and activity in the cockroach, Periplaneta americana. The kappa antagonist, nor-binaltorphimine, significantly increased food intake, while naltrexone (general antagonist) and naloxonazine (micro antagonist) both reduced feeding. A large mass loss was observed in cockroaches treated with nor-binaltorphimine, despite the increased food intake. Males did not lose as much mass during the 3h as females, although drug treatment did have some effect on the loss. Time of activity (%) was not influenced by any drug. Water loss experiments suggested that nor-binaltorphimine increased water loss, accounting for the mass loss despite the increased feeding. We suggest that two populations of opioid receptors are present as previously reported, with one affecting feeding and the other involved with evaporative water loss.


Subject(s)
Analgesics, Opioid/pharmacology , Behavior, Animal/physiology , Cockroaches/physiology , Eating/physiology , Animals , Female , Male , Naloxone/analogs & derivatives , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, mu/antagonists & inhibitors , Water Loss, Insensible/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...