Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-505118

ABSTRACT

The animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the impact of SARS-CoV-2. Vaccines remain successful at limiting severe disease and death, however the continued emergence of SARS-CoV-2 variants, together with the potential for further coronavirus zoonosis, motivates the search for pan-coronavirus vaccines that induce broadly neutralizing antibodies. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of several sarbecovirus glycan shields. Many N-linked glycan attachment sites are shared by all sarbecoviruses, and the processing state of certain sites is highly conserved. However, there are significant differences in the processing state at several glycan sites that surround the receptor binding domain. Our studies reveal similarities and differences in the glycosylation of sarbecoviruses and show how subtle changes in the protein sequence can have pronounced impacts on the glycan shield.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-484037

ABSTRACT

Many neutralizing antibodies (nAbs) elicited to ancestral SARS-CoV-2 through natural infection and vaccination generally have reduced effectiveness to SARS-CoV-2 variants. Here we show therapeutic antibody ADG20 is able to neutralize all SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.1.529) as well as other SARS-related coronaviruses. We delineate the structural basis of this relatively escape-resistant epitope that extends from one end of the receptor binding site (RBS) into the highly conserved CR3022 site. ADG20 can then benefit from high potency through direct competition with ACE2 in the more variable RBS and interaction with the more highly conserved CR3022 site. Importantly, antibodies that are able to target this site generally neutralize all VOCs, albeit with reduced potency against Omicron. Thus, this highly conserved and vulnerable site can be exploited for design of universal vaccines and therapeutic antibodies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-475303

ABSTRACT

The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we use a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduced the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for anti-viral indications could benefit from in vitro affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-454829

ABSTRACT

Three highly pathogenic betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks are likely to occur. Evidence suggests that neutralizing antibodies are important for protection against infection with CoVs. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-coronavirus protection. To this end, we previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 fusion machinery, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and displays cross reactive binding to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is also maintained against the Alpha, Delta and Gamma variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region on sarbecovirus spikes. A 1.74[A] crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs. Thus, CV3-25 defines a novel site of sarbecovirus vulnerability that will inform pan-CoV vaccine development.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-443900

ABSTRACT

The emergence of SARS-CoV-2 underscores the need for strategies to rapidly develop neutralizing monoclonal antibodies that can function as prophylactic and therapeutic agents and to help guide vaccine design. Here, we demonstrate that engineering approaches can be used to refocus an existing neutralizing antibody to a related but resistant virus. Using a rapid affinity maturation strategy, we engineered CR3022, a SARS-CoV-1 neutralizing antibody, to bind SARS-CoV-2 receptor binding domain with >1000-fold improved affinity. The engineered CR3022 neutralized SARS-CoV-2 and provided prophylactic protection from viral challenge in a small animal model of SARS-CoV-2 infection. Deep sequencing throughout the engineering process paired with crystallographic analysis of an enhanced antibody elucidated the molecular mechanisms by which engineered CR3022 can accommodate sequence differences in the epitope between SARS-CoV-1 and SARS-CoV-2. The workflow described provides a blueprint for rapid broadening of neutralization of an antibody from one virus to closely related but resistant viruses.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-088674

ABSTRACT

The development of countermeasures to prevent and treat COVID-19 is a global health priority. In under 7 weeks, we enrolled a cohort of SARS-CoV-2-recovered participants, developed neutralization assays to interrogate serum and monoclonal antibody responses, adapted our high throughput antibody isolation, production and characterization pipeline to rapidly screen over 1000 antigen-specific antibodies, and established an animal model to test protection. We report multiple highly potent neutralizing antibodies (nAbs) and show that passive transfer of a nAb provides protection against high-dose SARS-CoV-2 challenge in Syrian hamsters. The study suggests a role for nAbs in prophylaxis, and potentially therapy, of COVID-19. The nAbs define protective epitopes to guide vaccine design.

SELECTION OF CITATIONS
SEARCH DETAIL
...