Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(23): e2220678120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252966

ABSTRACT

Global change has converted many structurally complex and ecologically and economically valuable coastlines to bare substrate. In the structural habitats that remain, climate-tolerant and opportunistic species are increasing in response to environmental extremes and variability. The shifting of dominant foundation species identity with climate change poses a unique conservation challenge because species vary in their responses to environmental stressors and to management. Here, we combine 35 y of watershed modeling and biogeochemical water quality data with species comprehensive aerial surveys to describe causes and consequences of turnover in seagrass foundation species across 26,000 ha of habitat in the Chesapeake Bay. Repeated marine heatwaves have caused 54% retraction of the formerly dominant eelgrass (Zostera marina) since 1991, allowing 171% expansion of the temperature-tolerant widgeongrass (Ruppia maritima) that has likewise benefited from large-scale nutrient reductions. However, this phase shift in dominant seagrass identity now presents two significant shifts for management: Widgeongrass meadows are not only responsible for rapid, extensive recoveries but also for the largest crashes over the last four decades; and, while adapted to high temperatures, are much more susceptible than eelgrass to nutrient pulses driven by springtime runoff. Thus, by selecting for rapid post-disturbance recolonization but low resistance to punctuated freshwater flow disturbance, climate change could threaten the Chesapeake Bay seagrass' ability to provide consistent fishery habitat and sustain functioning over time. We demonstrate that understanding the dynamics of the next generation of foundation species is a critical management priority, because shifts from relatively stable habitat to high interannual variability can have far-reaching consequences across marine and terrestrial ecosystems.


Subject(s)
Alismatales , Zosteraceae , Alismatales/physiology , Ecosystem , Climate Change , Bays
2.
J Environ Manage ; 321: 115901, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35998533

ABSTRACT

Synthesizing large, complex data sets to inform resource managers towards effective environmental stewardship is a universal challenge. In Chesapeake Bay, a well-studied and intensively monitored estuary in North America, the challenge of synthesizing data on water quality and land use as factors related to a key habitat, submerged aquatic vegetation, was tackled by a team of scientists and resource managers operating at multiple levels of governance (state, federal). The synthesis effort took place over a two-year period (2016-2018), and the results were communicated widely to a) scientists via peer review publications and conference presentations; b) resource managers via web materials and workshop presentations; and c) the public through newspaper articles, radio interviews, and podcasts. The synthesis effort was initiated by resource managers at the United States Environmental Protection Agencys' Chesapeake Bay Program and 16 scientist participants were recruited from a diversity of organizations. Multiple short, immersive workshops were conducted regularly to conceptualize the problem, followed by data analysis and interpretation that supported the preparation of the synthetic products that were communicated widely. Reflections on the process indicate that there are a variety of structural and functional requirements, as well as enabling conditions, that need to be considered to achieve successful outcomes from synthesis efforts.


Subject(s)
Bays , Environmental Monitoring , Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Humans , United States , Water Quality
3.
Integr Environ Assess Manag ; 16(4): 494-507, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31944537

ABSTRACT

The process of developing a socioenvironmental report card through transdisciplinary collaboration can be used in any system and can provide the foundation for collaborative solutions for sustainable resource management by creating a holistic assessment that balances environmental, economic, and social concerns that incorporates multiple perspectives from multisectoral actors. We demonstrated this in the Mississippi River watershed, USA with the ultimate goal of promoting holistic management of the region's natural resources. But working at the scale of the Mississippi River watershed presents the challenge of working across geographical, organizational, and disciplinary boundaries. The development of a socioenvironmental report card served as the focus for efforts to foster a shared vision among diverse stakeholders in the watershed and to promote transdisciplinary collaboration. The process engaged more than 700 participants from environment, flood control, transportation, water supply, economy, and recreation sectors, from more than 400 organizations representing local, state, and federal government agencies, businesses and trade associations, and private, nonprofit, and academic institutions. This broad engagement in the selection of important themes, indicators, measures, and assessment methods as part of the cocreation of boundary objects aimed to foster social and mutual learning and to develop common understanding and shared visioning among stakeholders with differing perspectives. The process was facilitated by boundary-spanning organizations, creating an atmosphere of trust by utilizing "third places" for knowledge exchange and integration. This transdisciplinary process also led to collective action through collaboration and selection of restoration and management activities that could improve conditions for multiple sectors simultaneously and/or recognize potential tradeoffs for informed decision making. Integr Environ Assess Manag 2020;16:494-507. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Ecotoxicology , Water Supply , Economics , Social Conditions
4.
Integr Environ Assess Manag ; 15(4): 544-564, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30908815

ABSTRACT

Over the past century, the environment of the Gulf of Mexico has been significantly altered and impaired by extensive human activities. A national commitment to restore the Gulf was finally initiated in response to the unprecedented Deepwater Horizon oil spill in 2010. Consequently, there is a critical need for an assessment framework and associated set of indicators that can characterize the health and sustainability of an ecosystem having the scale and complexity of the Gulf. The assessment framework presented here was developed as an integration of previous ecological risk- and environmental management-based frameworks for assessing ecosystem health. It was designed to identify the natural and anthropogenic drivers, pressures, and stressors impinging on ecosystems and ecosystem services, and the ecological conditions that result, manifested as effects on valued ecosystem components. Four types of societal and ecological responses are identified: reduction of pressures and stressors, remediation of existing stressors, active ecosystem restoration, and natural ecological recovery. From this conceptual framework are derived the specific indicators to characterize ecological condition and progress toward achieving defined ecological health and sustainability goals. Additionally, the framework incorporates a hierarchical structure to communicate results to a diversity of audiences, from research scientists to environmental managers and decision makers, with the level of detail or aggregation appropriate for each targeted audience. Two proof-of-concept studies were conducted to test this integrated assessment and decision framework, a prototype Texas Coastal Ecosystems Report Card, and a pilot study on enhancing rookery islands in the Mission-Aransas Reserve, Texas, USA. This Drivers-Pressures-Stressors-Condition-Responses (DPSCR4 ) conceptual framework is a comprehensive conceptual model of the coupled human-ecological system. Much like its predecessor, the ecological risk assessment framework, the DPSCR4 conceptual framework can be tailored to different scales of complexity, different ecosystem types with different stress regimes, and different environmental settings. Integr Environ Assess Manag 2019;15:544-564. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Animals , Birds , Gulf of Mexico , Nesting Behavior , Oceans and Seas , Pilot Projects , Proof of Concept Study , Texas
5.
Proc Natl Acad Sci U S A ; 115(14): 3658-3662, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29507225

ABSTRACT

Humans strongly impact the dynamics of coastal systems, yet surprisingly few studies mechanistically link management of anthropogenic stressors and successful restoration of nearshore habitats over large spatial and temporal scales. Such examples are sorely needed to ensure the success of ecosystem restoration efforts worldwide. Here, we unite 30 consecutive years of watershed modeling, biogeochemical data, and comprehensive aerial surveys of Chesapeake Bay, United States to quantify the cascading effects of anthropogenic impacts on submersed aquatic vegetation (SAV), an ecologically and economically valuable habitat. We employ structural equation models to link land use change to higher nutrient loads, which in turn reduce SAV cover through multiple, independent pathways. We also show through our models that high biodiversity of SAV consistently promotes cover, an unexpected finding that corroborates emerging evidence from other terrestrial and marine systems. Due to sustained management actions that have reduced nitrogen concentrations in Chesapeake Bay by 23% since 1984, SAV has regained 17,000 ha to achieve its highest cover in almost half a century. Our study empirically demonstrates that nutrient reductions and biodiversity conservation are effective strategies to aid the successful recovery of degraded systems at regional scales, a finding which is highly relevant to the utility of environmental management programs worldwide.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Eutrophication , Food , Phytoplankton/growth & development , Water Pollutants, Chemical/analysis , Biodiversity , Environmental Monitoring , Estuaries , Maryland , Water Pollution/prevention & control
6.
Mar Pollut Bull ; 134: 166-176, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28935363

ABSTRACT

Seagrass ecosystems are inherently dynamic, responding to environmental change across a range of scales. Habitat requirements of seagrass are well defined, but less is known about their ability to resist disturbance. Specific means of recovery after loss are particularly difficult to quantify. Here we assess the resistance and recovery capacity of 12 seagrass genera. We document four classic trajectories of degradation and recovery for seagrass ecosystems, illustrated with examples from around the world. Recovery can be rapid once conditions improve, but seagrass absence at landscape scales may persist for many decades, perpetuated by feedbacks and/or lack of seed or plant propagules to initiate recovery. It can be difficult to distinguish between slow recovery, recalcitrant degradation, and the need for a window of opportunity to trigger recovery. We propose a framework synthesizing how the spatial and temporal scales of both disturbance and seagrass response affect ecosystem trajectory and hence resilience.


Subject(s)
Alismatales/physiology , Ecosystem , Models, Biological , Zosteraceae/physiology , Environment , Oceans and Seas , Spatio-Temporal Analysis
7.
Proc Natl Acad Sci U S A ; 106(30): 12377-81, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19587236

ABSTRACT

Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 km(2) yr(-1) since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% yr(-1) before 1940 to 7% yr(-1) since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.


Subject(s)
Alismatales/growth & development , Conservation of Natural Resources/statistics & numerical data , Ecosystem , Environmental Monitoring/statistics & numerical data , Animals , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Humans , Marine Biology , Population Density , Population Dynamics , Seawater
8.
Environ Manage ; 36(5): 757-71, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16206027

ABSTRACT

As part of the program monitoring the ecosystem health of Moreton Bay, Queensland, Australia, we developed a means for assessing ecosystem health that allows quantitative evaluation and spatial representations of the assessments. The management objectives for achieving ecosystem health were grouped into ecosystem objectives, water quality objectives, and human health objectives. For the first two groups, aspects of the ecosystem (e.g., trophic status) were identified, and an indicator was chosen for each aspect. Reference values for each indicator were derived from management objectives and compared with the mapped survey values. Subregions for which the indicator statistic was equal to or better than the assigned reference value are referred to as "compliant zones." High-resolution surface maps were created from spatial predictions on a fine hexagonal grid for each of the indicators. Eight reporting subregions were established based on the depth and predicted residence times of the water. Within each reporting subregion, the proportion that was compliant was calculated. These results then were averaged to create an integrated ecosystem health index. The ratings by a team of ecosystem experts and the calculated ecosystem health indices had good correspondence, providing assurance that the approach was internally consistent, and that the management objectives covered the relevant biologic issues for the region. This method of calculating and mapping ecosystem health, relating it directly to management objectives, may have widespread applicability for ecosystem assessment.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Monitoring , Humans , Oceans and Seas , Queensland , Sewage , Water Pollution , Water Supply
9.
Mar Pollut Bull ; 51(1-4): 428-37, 2005.
Article in English | MEDLINE | ID: mdl-15757741

ABSTRACT

During the last decade there has been a significant rise in observations of blooms of the toxic cyanobacterium Lyngbya majuscula along the east coast of Queensland, Australia. Whether the increase in cyanobacterial abundance is a biological indicator of widespread water quality degradation or also a function of other environmental change is unknown. A bioassay approach was used to assesses the potential for runoff from various land uses to stimulate productivity of L. majuscula. In Moreton Bay, L. majuscula productivity was significantly (p<0.05) stimulated by soil extracts, which were high in phosphorus, iron and organic carbon. Productivity of L. majuscula from the Great Barrier Reef was also significantly (p<0.05) elevated by iron and phosphorus rich extracts, in this case seabird guano adjacent to the bloom site. Hence, it is possible that other L. majuscula blooms are a result of similar stimulating factors (iron, phosphorus and organic carbon), delivered through different mechanisms.


Subject(s)
Cyanobacteria/growth & development , Eutrophication , Water Pollutants/poisoning , Animals , Biological Assay , Birds , Carbon , Environmental Monitoring , Iron , Manure , Phosphorus , Queensland , Risk Factors , Water Movements
10.
Mar Pollut Bull ; 48(5-6): 514-25, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14980467

ABSTRACT

Effluent from a land based shrimp farm was detected in a receiving creek as changes in physical, chemical and biological parameters. The extent and severity of these changes depended on farm operations. This assessment was conducted at three different stages of shrimp-pond maturity, including (1) when the ponds were empty, (2) full and (3) being harvested. Methods for assessing farm effluent in receiving waters included physical/chemical analyses of the water column, phytoplankton bioassays and nitrogen isotope signatures of marine flora. Comparisons were made with an adjacent creek that served as the farms intake creek and did not directly receive effluent. Physical/chemical parameters identified distinct changes in the receiving creek with respect to farm operations. Elevated water column NH(4)(+) (18.5+/-8.0 microM) and chlorophyll a concentrations (5.5+/-1.9 microg/l) were measured when the farm was in operation, in contrast to when the farm was inactive (1.3+/-0.3 microM and 1.2+/-0.6 microg/l, respectively). At all times, physical/chemical parameters at the mouth of the effluent creek, were equivalent to control values, indicating effluent was contained within the effluent-receiving creek. However, elevated delta(15)N signatures of mangroves (up to approximately 8 per thousand) and macroalgae (up to approximately 5 per thousand ) indicated a broader influence of shrimp farm effluent, extending to the lower regions of the farms intake creek. Bioassays at upstream sites close to the location of farm effluent discharge indicated that phytoplankton at these sites did not respond to further nutrient additions, however downstream sites showed large growth responses. This suggested that further nutrient loading from the shrimp farm, resulting in greater nutrient dispersal, will increase the extent of phytoplankton blooms downstream from the site of effluent discharge. When shrimp ponds were empty water quality in the effluent and intake creeks was comparable. This indicated that observed elevated nutrient and phytoplankton concentrations were directly attributable to farm operations.


Subject(s)
Aquaculture , Eutrophication , Penaeidae , Water Pollutants/analysis , Animals , Australia , Avicennia , Ecosystem , Environmental Monitoring , Phytoplankton , Population Dynamics , Water Movements
11.
Funct Plant Biol ; 31(5): 517-528, 2004 Jun.
Article in English | MEDLINE | ID: mdl-32688923

ABSTRACT

Coral cays form part of the Australian Great Barrier Reef. Coral cays with high densities of seabirds are areas of extreme nitrogen (N) enrichment with deposition rates of up to 1000 kg N ha-1 y-1. The ways in which N sources are utilised by coral cay plants, N is distributed within the cay, and whether or not seabird-derived N moves from cay to surrounding marine environments were investigated. We used N metabolite analysis, 15N labelling and 15N natural abundance (δ15N) techniques. Deposited guano-derived uric acid is hydrolysed to ammonium (NH4+) and gaseous ammonia (NH3). Ammonium undergoes nitrification, and nitrate (NO3-) and NH4+ were the main forms of soluble N in the soil. Plants from seabird rookeries have a high capacity to take up and assimilate NH4+, are able to metabolise uric acid, but have low rates of NO3- uptake and assimilation. We concluded that NH4+ is the principal source of N for plants growing at seabird rookeries, and that the presence of NH4+ in soil and gaseous NH3 in the atmosphere inhibits assimilation of NO3-, although NO3- is taken up and stored. Seabird guano, Pisonia forest soil and vegetation were similarly enriched in 15N suggesting that the isotopic enrichment of guano (δ15N 9.9‰) carries through the forest ecosystem. Soil and plants from woodland and beach environments had lower δ15N (average 6.5‰) indicating a lower contribution of bird-derived N to the N nutrition of plants at these sites. The aquifer under the cay receives seabird-derived N leached from the cay and has high concentrations of 15N-enriched NO3- (δ15N7.9‰). Macroalgae from reefs with and without seabirds had similar δ15N values of 2.0-3.9‰ suggesting that reef macroalgae do not utilise 15N-enriched seabird-derived N as a main source of N. At a site beyond the Heron Reef Crest, macroalgae had elevated δ15N of 5.2‰, possibly indicating that there are locations where macroalgae access isotopically enriched aquifer-derived N. Nitrogen relations of Heron Island vegetation are compared with other reef islands and a conceptual model is presented.

12.
Photosynth Res ; 74(3): 281-93, 2002.
Article in English | MEDLINE | ID: mdl-16245139

ABSTRACT

Direct comparisons between photosynthetic O(2) evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O(2) exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((F(m)'-F(t))/F(m)') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O(2) evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O(2) evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m(-2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO(3) (-)], [NH(4) (+)] and [HPO(4) (2-)] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O(2) evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O(2), i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.

13.
J Phycol ; 36(4): 680-685, 2000 Aug 26.
Article in English | MEDLINE | ID: mdl-29542151

ABSTRACT

The response of the marine macroalga Gracilaria edulis (Gmelin) Silva to nutrient pulses of varying magnitude was investigated to test its applicability as a marine bioindicator at two oligotrophic locations. After exposure to nutrient pulses, algal amino acid, tissue nitrogen, and chlorophyll a content were assessed relative to algae incubated under control conditions (no nutrient enrichment). The smallest nutrient pulse involved a nutrient enrichment experiment conducted within a coral atoll, whereas two larger pulses resulted from sewage discharge to a tropical coastal bay. After exposure to the smallest nutrient pulse (10 × ambient), only changes in macroalgal amino acid concentration and composition were detected (mainly as increases in citrulline). At 100 × ambient concentrations, increases in tissue % nitrogen of the macroalgae were detected, in addition to responses in amino acids. Macroalgae exposed to the highest nutrient pulse (1000 × ambient) responded with increased chlorophyll a, tissue nitrogen, and amino acids within the three day incubation period. In contrast to these algal responses, analytical water sampling techniques failed to detect elevated nutrients when nutrient pulses were not occurring. The responses of this algal bioindicator to variable nutrient pulses may provide a useful tool for investigating the source and geographical extent of nutrients entering oligotrophic coastal waters.

14.
Oecologia ; 55(2): 137-144, 1982 Nov.
Article in English | MEDLINE | ID: mdl-28311224

ABSTRACT

Photosynthetic responses of the temperate seagrass, Zostera marina L., were examined by manipulations of photon flux density in an eelgrass bed in Great Harbor, Woods Hole, MA during August 1981. Sun reflectors and light shading screens were placed at shallow (1.3 m) and deep (5.5 m) stations in the eelgrass bed to increase (+35% to +40%) and decrease (-55%) ambient photon flux densities. The portion of the day that light intensities exceeding the light compensation point for Z. marina (H comp) and the light saturation point (H sat) were determined to assess the impact of the reflectors and shades. The H comp and H sat periods at the deep station shading screen were most strongly affected; H comp was reduced by 11% and H sat was reduced by 52%. Light-saturated photosynthetic rates, dark respiration rates, leaf chlorophyll content, chlorophyll a/b, PSUO2 size, PSU density, leaf area, specific leaf area, leaf turnover times and leaf production rates were determined at the end of three sets of 1- to 2-week experiments. None of the measured parameters were affected by the photon flux density manipulations at the shallow station; however, at the deep station leaf production rates were significantly reduced under the shading screen and chlorophyll a/b ratios were higher at the reflector. These results indicate that adjustment to short-term changes in light regime in Z. marina is largely by leaf production rates. Further, the most dramatic changes in the periods of compensating or saturating photon flux densities had the greatest impact on the measured photosynthetic responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...