Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biometals ; 31(5): 759-770, 2018 10.
Article in English | MEDLINE | ID: mdl-29946993

ABSTRACT

Several Escherichia coli deletion mutants of the Keio collection were selected for analysis to better understand which genes may play a key role in copper or silver homeostasis. Each of the selected E. coli mutants had a deletion of a single gene predicted to encode proteins for homologous recombination or contained functions directly linked to copper or silver transport or transformation. The survival of these strains on pure copper surfaces, stainless steel, and alloys of aluminum, copper and/or silver was investigated. When exposed to pure copper surfaces, E. coli ΔcueO was the most sensitive, whereas E. coli ΔcopA was the most resistant amongst the different strains tested. However, we observed a different trend in sensitivities in E. coli strains upon exposure to alloys of the system Al-Ag-Cu. While minor antimicrobial effects were detected after exposure of E. coli ΔcopA and E. coli ΔrecA to Al-Ag alloys, no effect was detected after exposure to Al-Cu alloys. The release of copper ions and cell-associated copper ion concentrations were determined for E. coli ΔcopA and the wild-type E. coli after exposure to pure copper surfaces. Altogether, compared to binary alloys, ternary eutectic alloys (Al-Ag-Cu) had the highest antimicrobial effect and thus, warrant further investigation.


Subject(s)
Alloys/pharmacology , Aluminum/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Alloys/chemistry , Aluminum/chemistry , Anti-Bacterial Agents/chemistry , Copper/chemistry , Copper/pharmacology , Escherichia coli/cytology , Escherichia coli/genetics , Microbial Sensitivity Tests , Silver/chemistry , Silver/pharmacology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...