Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(8): 2336-2340, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30511412

ABSTRACT

Hybridization of metal-organic frameworks (MOFs) and polymers into composites yields materials that display the exceptional properties of MOFs with the robustness of polymers. However, the realization of MOF-polymer composites requires efficient dispersion and interactions of MOF particles with polymer matrices, which remains a significant challenge. Herein, we report a simple, scalable, bench-top approach to covalently tethered nylon-MOF polymer composite materials through an interfacial polymerization technique. The copolymerization of a modified UiO-66-NH2 MOF with a growing polyamide fiber (PA-66) during an interfacial polymerization gave hybrid materials with up to around 29 weight percent MOF. The covalent hybrid material demonstrated nearly an order of magnitude higher catalytic activity for the breakdown of a chemical warfare simulant (dimethyl-4-nitrophenyl phosphate, DMNP) compared to MOFs that are non-covalently, physically entrapped in nylon, thus highlighting the importance of MOF-polymer hybridization.

2.
Chem Sci ; 9(47): 8842-8849, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30627402

ABSTRACT

The diverse chemical and structural properties of metal-organic frameworks (MOFs) make them attractive for myriad applications, but their native powder form is limiting for industrial implementation. Composite materials of MOFs hold promise as a means of exploiting MOF properties in engineered forms for real-world applications. While interest in MOF composites is growing, research to date has largely focused on utilization of single MOF systems. The vast number of different MOF structures provides ample opportunity to mix and match distinct MOF species in a single composite to prepare multifunctional systems. In this work, we describe the preparation of three types of multi-MOF composites with poly(vinylidene fluoride) (PVDF): (1) co-cast MOF MMMs, (2) mixed MOF MMMs, and (3) multilayer MOF MMMs. Finally, MOF MMMs are explored as catalytic membrane reactors for chemical transformations.

3.
J Am Chem Soc ; 140(4): 1348-1357, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29268603

ABSTRACT

Postsynthetic strategies for modifying metal-organic frameworks (MOFs) have proven to be an incredibly powerful approach for expanding the scope and functionality of these materials. Previously, we reported on the postsynthetic exchange (PSE) of metal ions and ligands in the University of Oslo (UiO) series of MOFs. Detailed characterization by several analytical methods, most notably inductively coupled plasma mass spectrometry and transmission electron microscopy reveal that metal ion deposition on the surface of these MOFs occurs in the form of nanoscale metal oxides, rather than yielding exchanged metal sites within the MOFs, as was previously reported. By contrast, these combined analytical methods do confirm that ligand-based PSE can occur in these MOFs. These findings provide new insight into the postsynthetic manipulation of MOF materials, highlight the importance of rigorously characterizing these materials to correctly assign their composition and structure, and provide a new route to making hybrid solids with a MOF@metal oxide architecture.


Subject(s)
Metal-Organic Frameworks/chemistry , Oxides/chemistry , Zirconium/chemistry , Ligands , Microscopy, Electron, Transmission , Particle Size , Surface Properties
4.
J Am Chem Soc ; 139(40): 13973-13976, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28942647

ABSTRACT

Metal-organic frameworks (MOFs) have emerged as a versatile platform for the rational design of multifunctional materials, combining large specific surface areas with flexible, periodic frameworks that can undergo reversible structural transitions, or "breathing", upon temperature and pressure changes, and through gas adsorption/desorption processes. Although MOF breathing can be inferred from the analysis of adsorption isotherms, direct observation of the structural transitions has been lacking, and the underlying processes of framework reorganization in individual MOF nanocrystals is largely unknown. In this study, we describe the characterization and elucidation of these processes through the combination of in situ environmental transmission electron microscopy (ETEM) and computer simulations. This combined approach enables the direct monitoring of the breathing behavior of individual MIL-53(Cr) nanocrystals upon reversible water adsorption and temperature changes. The ability to characterize structural changes in single nanocrystals and extract lattice level information through in silico correlation provides fundamental insights into the relationship between pore size/shape and host-guest interactions.


Subject(s)
Metal-Organic Frameworks/ultrastructure , Microscopy, Electron, Transmission/methods , Chromium/chemistry , Computer Simulation , Metal-Organic Frameworks/chemistry , Models, Molecular , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Porosity , Temperature , Water/chemistry
5.
Chem Commun (Camb) ; 52(100): 14376-14379, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27886285

ABSTRACT

A series of styrene/butadiene polymers were combined with up to 90 wt% UiO-66 to form mixed-matrix membranes with varying physical properties. Notably, polystyrene-block-polybutadiene (SBS) membranes retained much of the processability and flexibility of the native polymer component and the porosity, chemical tunability, and adsorption of the native MOF.

6.
Chem Sci ; 7(4): 2711-2716, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-28660045

ABSTRACT

Metal-organic frameworks (MOFs) in their free powder form have exhibited superior capacities for many gases when compared to other materials, due to their tailorable functionality and high surface areas. Specifically, the MOF HKUST-1 binds small Lewis bases, such as ammonia, with its coordinatively unsaturated copper sites. We describe here the use of HKUST-1 in mixed-matrix membranes (MMMs) prepared from polyvinylidene difluoride (PVDF) for the removal of ammonia gas. These MMMs exhibit ammonia capacities similar to their hypothetical capacities based on the weight percent of HKUST-1 in each MMM. HKUST-1 in its powder form is unstable toward humid conditions; however, upon exposure to humid environments for prolonged periods of time, the HKUST-1 MMMs exhibit outstanding structural stability, and maintain their ammonia capacity. Overall, this study has achieved all of the critical and combined elements for real-world applications of MOFs: high MOF loadings, fully accessible MOF surfaces, enhanced MOF stabilization, recyclability, mechanical stability, and processability. This study is a critical step in advancing MOFs to a stable, usable, and enabling technology.

7.
Angew Chem Int Ed Engl ; 54(31): 9029-32, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26073065

ABSTRACT

Processable films of metal-organic frameworks (MOFs) have been long sought to advance the application of MOFs in various technologies from separations to catalysis. Herein, MOF-polymer mixed-matrix membranes (MMMs) are described, formed on several substrates using a wide variety of MOF materials. These MMMs can be delaminated from their substrates to create free-standing MMMs that are mechanically stable and pliable. The MOFs in these MMMs remain highly crystalline, porous, and accessible for further chemical modification through postsynthetic modification (PSM) and postsynthetic exchange (PSE) processes. Overall, the findings here demonstrate a versatile approach to preparing stable functional MMMs that should contribute significantly to the advancement of these materials.

8.
J Am Chem Soc ; 137(23): 7322-8, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26053504

ABSTRACT

Liquid cell transmission electron microscopy (LCTEM) can provide direct observations of solution-phase nanoscale materials, and holds great promise as a tool for monitoring dynamic self-assembled nanomaterials. Control over particle behavior within the liquid cell, and under electron beam irradiation, is of paramount importance for this technique to contribute to our understanding of chemistry and materials science at the nanoscale. However, this type of control has not been demonstrated for complex, organic macromolecular materials, which form the basis for all biological systems and all of polymer science, and encompass important classes of advanced porous materials. Here we show that by controlling the liquid cell membrane surface chemistry and electron beam conditions, the dynamics and growth of metal-organic frameworks (MOFs) can be observed. Our results demonstrate that hybrid organic/inorganic beam-sensitive materials can be analyzed with LCTEM and, at least in the case of ZIF-8 dynamics, the results correlate with observations from bulk growth or other standard synthetic conditions. Furthermore, we show that LCTEM can be used to better understand how changes to synthetic conditions result in changes to particle size. We anticipate that direct, nanoscale imaging by LCTEM of MOF nucleation and growth mechanisms may provide insight into controlled MOF crystal morphology, domain composition, and processes influencing defect formation.

9.
J Am Chem Soc ; 134(38): 15644-7, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22963012

ABSTRACT

A new solution-based method to fabricate Cu(2)ZnSn(S,Se)(4) (CZTSSe) thin films is presented. Binary and ternary chalcogenide nanoparticles were synthesized and used as precursors to form CZTSSe thin films. The composition of the CZTSSe films can be easily controlled by adjusting the ratio of the nanoparticles used. The effect of compositional adjustment on device performance is illustrated. Laboratory-scale photovoltaic cells with 8.5% total-area efficiency (or 9.6% active-area efficiency) were demonstrated without anti-reflective coatings. Material characterization data revealed the formation of a bilayer microstructure during thermal processing and suggested a path forward on device improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...