Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Stroke ; 15(5): 467-476, 2020 07.
Article in English | MEDLINE | ID: mdl-31679478

ABSTRACT

The recent advent of endovascular procedures has created the unique opportunity to collect and analyze thrombi removed from cerebral arteries, instigating a novel subfield in stroke research. Insights into thrombus characteristics and composition could play an important role in ongoing efforts to improve acute ischemic stroke therapy. An increasing number of centers are collecting stroke thrombi. This paper aims at providing guiding information on thrombus handling, procedures, and analysis in order to facilitate and standardize this emerging research field.


Subject(s)
Brain Ischemia , Endovascular Procedures , Stroke , Thrombosis , Brain Ischemia/complications , Brain Ischemia/surgery , Humans , Stroke/surgery , Thrombectomy
2.
J Thromb Haemost ; 16(11): 2289-2299, 2018 11.
Article in English | MEDLINE | ID: mdl-30152919

ABSTRACT

Essentials ADAMTS13 requires a substrate-induced conformational change to attain full activity in vitro. The efficacy of wild type ADAMTS13 in models of thrombosis/stroke may be enhanced by pre-activation. A pre-activated ADAMTS13 variant exhibits enhanced proteolysis of platelet agglutinates. This ADAMTS13 variant is protective in a murine model of stroke at a lower dose than WT ADAMTS13. SUMMARY: Background ADAMTS-13 circulates in a closed conformation, only achieving full proteolytic activity against von Willebrand factor (VWF) following a substrate-induced conformational change. A gain-of-function (GoF) ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F) is conformationally preactivated. Objectives To establish how the hyperactivity of GoF ADAMTS-13 is manifested in experimental models mimicking the occlusive arterial thrombi present in acute ischemic stroke. Methods The ability of GoF ADAMTS-13 to dissolve VWF-platelet agglutinates was examined with an assay of ristocetin-induced platelet agglutination and in parallel-flow models of arterial thrombosis. A murine model of focal ischemia was used to assess the thrombolytic potential of GoF ADAMTS-13. Results Wild-type (WT) ADAMTS-13 required conformational activation to attain full activity against VWF-mediated platelet capture under flow. In this assay, GoF ADAMTS-13 had an EC50 value more than five-fold lower than that of WT ADAMTS-13 (0.73 ± 0.21 nm and 3.81 ± 0.97 nm, respectively). The proteolytic activity of GoF ADAMTS-13 against preformed platelet agglutinates under flow was enhanced more than four-fold as compared with WT ADAMTS-13 (EC50 values of 2.5 ± 1.1 nm and 10.2 ± 5.6 nm, respectively). In a murine stroke model, GoF ADAMTS-13 restored cerebral blood flow at a lower dose than WT ADAMTS-13, and partially retained the ability to recanalize vessels when administration was delayed by 1 h. Conclusions The limited proteolytic activity of WT ADAMTS-13 in in vitro models of arterial thrombosis suggests an in vivo requirement for conformational activation. The enhanced activity of the GoF ADAMTS-13 variant translates to a more pronounced protective effect in experimental stroke.


Subject(s)
ADAMTS13 Protein/genetics , Brain Ischemia/metabolism , Platelet Aggregation , Stroke/metabolism , ADAMTS13 Protein/metabolism , Animals , Arteries/metabolism , Blood Platelets/metabolism , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Humans , Mice , Protein Conformation , Proteolysis , Recombinant Proteins , Ristocetin , Thrombosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...